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Abstract

This paper provides causal evidence that asset price distortions caused by benchmarking af-

fect corporate investment decisions. We document that the rise in benchmark-linked invest-

ing over the past two decades fundamentally changed the cross-section of CAPM β̂s. Exploit-
ing exogenous variation from Russell index reconstitutions, we show inclusion in benchmark

indices leads to higher CAPM β̂s, with larger effects observed among stocks facing greater

benchmarking intensity. Firmmanagers interpret the resulting higher CAPM β̂ as an increase

in their firm’s cost of capital, leading them to reduce investment. Six years after inclusion,

firms experience 7.1% and 8.4% declines in physical and intangible capital, respectively. Sup-

porting evidence shows that benchmark-inclusion similarly increases the perceived cost of

equity among stock analysts and regulators. We find consistent results at the industry level.

Industries which experienced greater increases in CAPM β̂s due to benchmarking accumu-

lated less capital over the past two decades. Moreover, benchmarking creates excess disper-

sion in the cost of capital within industries, causing inefficient capital allocation across firms.

The rise in CAPM β̂s largely offset the decline in the risk-free rate over the past decades and

can explain 57% of the “missing investment” puzzle.
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1 Introduction

Over the past 25 years the U.S. economy has been shaped by two trends: weak corporate in-

vestment relative to valuations and a rise in benchmark-linked investing. The growth of passive

index funds and the evaluation of active funds against benchmarks means that a large share of

capital today is allocated based on stocks’ membership in benchmark indices, as opposed to fun-

damentals.
1
This inelastic demand distorts asset prices, leading to higher prices (Shleifer, 1986),

increased volatility (Ben-David, Franzoni, and Moussawi, 2018), and greater co-movement (Bar-

beris, Shleifer, and Wurgler, 2005) for stocks in benchmark indices. Whether these asset price

distortions have contributed to weak corporate investment is not well understood.

This paper studies the causal effects of benchmarking-induced asset price distortions on cor-

porate investment. We document a novel mechanism through which benchmarking influences

corporate behavior. We use exogenous variation in stocks’ benchmarking intensity to show that

increased exposure to benchmark-linked capital flows raises stocks’ CAPM β estimates (i.e., β̂).

Firm managers interpret this increase in CAPM β̂ as a higher cost of capital and consequently

reduce investment. Importantly, we show that these results are not driven by changing firm fun-

damentals. Instead, we argue that firm managers rely on textbook guidance to set discount rates

using CAPM β̂s without accounting for distortions created by benchmarking. These distortions

have a substantial impact on investment at the firm, industry, and aggregate level through their

effect on the perceived cost of equity capital. Our study thus provides new insights into how the

growing trend of benchmark-linked investing affects real economic outcomes.

We illustrate our proposed mechanism in a stylized model that introduces two frictions into

a standard model of corporate investment. The first source of friction are benchmarking-induced

asset price distortions that drive wedges into firm discount rates (Kashyap, Kovrijnykh, Li, and

Pavlova, 2021). The inelastic demand of benchmarked funds for benchmark constituent stocks

raises their price, but also increases their co-movement. These forces have opposing effects on the

discount rate: the increased stock price lowers the implied discount rate and incentivizes invest-

ment, while greater co-movement discourages it. As such, the overall effect of benchmarking on

discount rates and optimal investment is ambiguous. The second friction is a behavioral assump-

tion that firm managers behave exactly as they are taught to in textbooks and MBA classrooms:

they use the weighted average cost of capital implied by the CAPM to discount cash flows.

1
In 2023, $17.9 trillion in assets were benchmarked to S&PDow Jones’ and $10.5 trillion to FTSE-Russell’s U.S. indices.

The Investment Company Institute (2024) reports that passive funds held 18% of total U.S. stock market assets in

2023. Chinco and Sammon (2024) put the overall passive share at twice that number, accounting for institutions

with internally managed index portfolios and quasi-indexing active managers (see also Cremers and Petajisto, 2009).

2

https://www.spglobal.com/spdji/en/documents/index-news-and-announcements/spdji-indexed-asset-survey-2023.pdf
https://web.archive.org/web/20240611121343/https://www.lseg.com/en/media-centre/press-releases/ftse-russell/2024/ftse-russell-begins-36th-annual-russell-reconstitution
https://web.archive.org/web/20240923164032/https://www.ici.org/system/files/2024-05/2024-factbook.pdf


While the assumption that firm managers practice what textbooks teach
2
may seem innocu-

ous, it is key to our mechanism. Managers who set discount rates using their stocks’ CAPM β̂ will

observe an increase in co-movement upon benchmark inclusion which discourages investment.

However, they will overlook the price effect that incentivizes investment. This failure to internal-

ize the distortionary effects of benchmarking leads managers to perceive an increase in their cost

of capital. Consequently, benchmarking has an unambiguously negative impact on investment.

We test our model’s predictions using the benchmarking-intensity measure (BMI) developed

by Pavlova and Sikorskaya (2023). BMI measures the total inelastic demand that a stock attracts

from benchmarked funds, expressed as a fraction of the stock’s market capitalization. We merge

the BMI measure with CAPM β̂s from Welch (2022b), accounting data from Compustat, data on

managers’ perceived cost of capital from Gormsen and Huber (2024), and market data from CRSP.

We begin by documenting new facts about the cross-section of CAPM β̂s. We show that over

the past 25 years, stocks’ CAPM β̂s and benchmarking intensity increased in lockstep. Firms

representing over 40% of annual capital expenditures in Compustat experienced a significant in-

crease in their CAPM β̂, with an average increase of 0.33. However, this increase in CAPM β̂s

is not due to changes in firms’ fundamental risk, as measured by cash flow βs, or changes in

leverage. Instead, we find distortions in the cross-section of CAPM β̂s across market capitaliza-

tion ranks used to construct benchmark indices. This suggests that the rise in benchmark-linked

investing affected the measurement of CAPM βs over the past 25 years.

We establish a causal link between benchmarking andCAPM β̂ using a difference-in-differences

design around Russell index reconstitutions. The Russell indices are widely used benchmarks for

U.S. equity markets and reconstitute annually based on market capitalization ranks. Changes

in Russell index membership around benchmark inclusion cutoffs lead to plausibly exogenous

changes in benchmarking intensity (Pavlova and Sikorskaya, 2023). Our difference-in-differences

approach does not require that benchmark inclusion is random or common support in covariate

levels across stocks. It only requires that treated and control stock’s CAPM β̂ would have evolved

similarly absent changes in benchmarking intensity. We restrict our sample to all stocks within

300 ranks around the Russell index cutoffs to ensure we capture only changes in benchmarking

intensity due to index reconstitution. We control for stocks’ momentum over the past 12 to 24

months before index reconstitution to account for the possibility that stocks’ momentum affects

CAPM β̂. We further include high-dimensional fixed effects that remove as much time-varying

2
For example, corporate finance textbooks by Brealey, Myers, Allen, and Edmans (2023), Berk and DeMarzo (2023),

and Ross, Westerfield, Jaffe, and Jordan (2016). A notable exception is Welch (2022a, Chapter 10) who suggests to

always use a market β of 1 to calculate discount rates. Gollier (2021) estimates that the welfare loss from using a

single discount rate is equivalent to a permanent reduction in consumption of up to 45% in a calibrated Lucas model.
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unobserved heterogeneity as possible to ensure that our estimates are well-identified.

The difference-in-differences results show that an increase in the BMI of a stock by at least 5

percentage points (p.p.) due to index reconstitution increases its CAPM β̂ by 0.18. The treatment

effects of benchmark inclusion on CAPM β̂ increase with benchmarking intensity: Stocks with a

BMI increase of at least 10 p.p. (20 p.p.) subsequently have 0.23 (0.35) higher CAPM β̂s. Micro-cap

stocks do not drive the effects. The effects are also present for stocks with market capitalization

above the 20th percentile of the NYSE. The changes in CAPM β̂s are not due to changes in funda-

mentals or risk exposure. Instead, our results show that increased co-movement with the market

is explained by institutional ownership and exposure to benchmark-linked capital flows. Specif-

ically, we show that cross-sectional changes in CAPM β̂s correlate with net flows into passive

mutual funds and ETFs but not with net flows into active mutual funds.

The increase in firms’ CAPM implied cost of equity is substantial and persistent. Assuming

an annual equity risk premium (ERP) of 6%, our baseline results imply an increase of 108 basis

points (bps). The effect persist for years and only partly reverses: we find a 125 bps higher cost

of equity after one year, 75 bps after four years, and 67 bps after seven years. Compared to other

discount rate shocks these effects are fast, large, and persistent.
3
If managers rely on the CAPM

to allocate capital, persistent changes in β̂s have long-lasting effects on investment behavior.

In contrast, the implied cost of capital (ICC) derived from stock price levels experiences only

short-lived effects at benchmark inclusion.
4
We observe an initial decrease of 36 bps in the ICC,

equivalent to a 5.24% price increase—close to the 5% price effect documented by Chang, Hong, and

Liskovich (2015). However, this effect fades to 14 bps after one year and becomes insignificant

thereafter. The short-lived impact implies that benchmarking effects on investment via price

levels are limited. Berk and Van Binsbergen (2025) argue that short-term price shifts do not

significantly influence a firm’s long-term cost of capital. This conclusion is supported by studies

documenting a substantial decline in benchmark inclusion price effects, from 7.4% in the 1990s

to under 1% recently for the S&P 500 (Greenwood and Sammon, 2024), and similarly for Russell

benchmarks (Chang et al., 2015). Our findings suggest benchmarking primarily impacts the cost

of capital through persistent changes in CAPM β̂s rather than short-term stock price fluctuations.

Increases in a stock’s benchmarking intensity predict a higher perceived cost of capital by

the firm’s managers as reported in the data collected by Gormsen and Huber (2023). We use

changes in benchmarking intensity around index reconstitutions as an instrumental variable (IV)

3
For example, Bauer and Rudebusch (2020) estimate that the natural rate declined by 100 bps between 2002 and 2020.

4
Following Eskildsen, Ibert, Jensen, and Pedersen (2024), we calculate ICC by averaging four widely used accounting

models: the residual income models from Gebhardt, Lee, and Swaminathan (2001) and Claus and Thomas (2001),

and the dividend discount models from Easton (2004) and Ohlson and Juettner-Nauroth (2005).

4



to identify the causal effect of changes in CAPM β̂ on a firm’s perceived cost of capital. Our IV

estimates imply that managers use a perceived equity risk premium of around 3.4%, close to the

average equity risk premium of 3.6% reported by Chief Financial Officers (CFO) from 2000 to 2017

in the CFO Outlook Survey by Graham and Harvey (2018). Moreover, the estimates show that

managers’ perceived cost of capital responds to benchmarking-induced increases in CAPM β̂: a

0.2 change in CAPM β̂ increase managers’ perceived cost of capital by approx. 70 bps.

We provide corroborating evidence of the causal channel from benchmarking-induced changes

in CAPM β̂ to the perceived cost of equity in five additional datasets. Independent stock analysts

of Morningstar and Value Line, as well as sell-side analysts covered by I/B/E/S all report a higher

perceived cost of equity after an exogenous increase in a stock’s benchmarking intensity. Sim-

ilarly, the requested and subsequently authorized cost of equity of regulated monopolies such

as public utilities and railroads increases with benchmarking intensity.
5
We again identify the

causal effect of CAPM β̂s on analysts’, regulated firms’, and regulators’ perceived cost of equity

using (changes in) benchmarking intensity as an instrumental variable. Across datasets, we find

perceived equity risk premia between 4% and 8% annually. In other words, a 0.2 change in CAPM

β̂ increase analysts’, firms’, and regulators’ perceived cost of equity between 80 and 160 bps.

Our second set of results investigates how firms react to changes in their CAPM β̂ induced

by changes in their stock’s benchmarking intensity. For a firm manager who follows textbook

guidance to set investment policies using the WACC implied by the CAPM, an increase in CAPM

β̂ raises the user cost of capital and should lead to a decline in investment (Jorgenson, 1963).

We test whether changes in CAPM β̂ affect firm outcomes like capital expenditure, physical

and intangible capital stocks, cash holdings, payouts, and employment. We use Jordà’s (2005)

local projections (LP) to estimate the effects of an increase in CAPM β̂ on capital allocation over

horizons of up to 6 years using changes in BMI as IV. The instrument uses the plausibly exogenous

variation in BMI from Russell index reconstitution to instrument for the endogenous relationship

between CAPM β and investment. We ensure that our estimates are well-identified using three

methods. First, we saturate our LP-IV estimator with high-dimensional fixed effects to remove

as much time-varying unobserved heterogeneity as possible. Second, we confirm that our re-

sults are robust to inclusion of known predictors of capital accumulation (e.g., Tobin’s Q or cash

flow). Third, we conduct several tests to validate the exclusion restriction but find no evidence

that changes in BMI correlate with changes in risk exposure, debt market access, or corporate

governance: The CAPM β̂ of peer firms remains stable when a treated firm’s BMI changes, and

firm-level risk measures show no correlation with changes in BMI. BMI changes do not affect

5
The CAPM is frequently used to set allowed returns on equity under rate-of-return regulation (Kontz, 2025).
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measures of financial frictions and the cost of debt, including CDS spreads. Corporate gover-

nance scores do not change when BMI changes. These findings suggest that BMI changes are

orthogonal to other factors that influence investment and support their use as valid instrument.

A benchmarking-induced increase in a firm’s CAPM β̂ leads to a substantial and persistent

reduction in investment. Specifically, a 20% rise in CAPM β̂ results in a cumulative decrease of

10.0% in capital expenditure over a six-year period. Rather than investing, treated firms initially

accumulate cash and later increase shareholder payouts. The treatment effects align with firms

gradually updating their discount rates in response to higher CAPM β̂s (Gormsen and Huber,

2023): the effects are negligible at short horizons, grow steadily over time, and become statistically

significant after three years. Over six years, the average treated firm’s physical capital stock falls

by 7.1%, and its intangible capital stock by 8.4%. These responses imply a user cost of capital

elasticity near unity, consistent with Cobb-Douglas production.

We find supporting evidence in the NBER-CES manufacturing data, where higher industry-

level CAPM β̂s lowered capital accumulation by 12.5% from 2000 to 2016. The dataset spans over

100 industries, covering both public and private firms.
6
To estimate the impact of rising industry-

level CAPM β̂s on capital accumulation, we use IV regressions in long-differences from 2000 to

2016. We instrument the value-weighted change in industry-level CAPM β̂s with the correspond-

ing change in benchmarking intensity. The results are robust to controlling for industry-level

pre-trends, exposure to the China shock, and the inclusion of sector fixed effects, which restrict

identification to within-sector variation.

We further show that benchmarking distorts capital allocation by increasing within-industry

dispersion in firms’ perceived cost of capital. Building on David, Schmid, and Zeke (2022), who

argue that dispersion in the marginal product of capital (MPK) partly reflects variation in firms’

CAPM βs, we document that benchmarking-induced variation in β̂s has become an increasingly

large component of within-industry dispersion over time. Using Russell Index reconstitutions

as an instrument for exogenous changes in benchmarking intensity, we isolate the variation in

CAPM β̂s attributable to benchmarking. We then show that this excess dispersion in perceived

risk exposures leads to greater dispersion in the marginal product of capital across firms within

an industry, a common measure of allocative inefficiency (e.g., Bau and Matray, 2023).

Lastly, we estimate a counterfactual weighted average cost of capital (WACC) for the average

firm by removing benchmarking-induced distortions from its CAPM β̂. This exercise reveals an

average wedge of 145 basis points between actual and counterfactual WACC since 2004. From

1975 to 2000, the equal-weighted average CAPM β̂ was relatively stable, but over the past 25

6
Many private firms also use the CAPM, estimating their cost of equity from β̂s of comparable publicly traded firms.
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years it rose by 0.41, 88% of which we attribute to a 14 percentage point increase in average

benchmarking intensity. Adjusting for this rise, we find that the decline in the risk-free rate over

the past two decades has been largely offset by higher CAPM β̂s.

We assess whether the wedge between actual and counterfactual WACC is sufficient to ex-

plain the puzzle of missing aggregate investment documented by Gutiérrez and Philippon (2017).

Using 1990–2002 data, we estimate the historical relationship between aggregate investment and

Tobin’s Q, then predict post-2002 investment assuming this relationship remains constant. The

cumulative shortfall since 2002 represents the “missing investment”. We adjust Tobin’s Q follow-

ing Gormsen and Huber (2023) to account for the discrepancy between the market’s discount rate

and firms’ perceived cost of capital.

The WACC wedge we document can explain 57% of the missing investment puzzle at the

aggregate level. Without adjustment, the investment shortfall implied by Tobin’s Q is approx-

imately 25% of the capital stock by 2019. After accounting for the WACC wedge created by

benchmarking, this shortfall reduces to about 11%. The remaining gap is likely related to other

macro developments, such as rising market power (Barkai, 2020, Crouzet and Eberly, 2023) and

mismeasurement of intangible capital (Peters and Taylor, 2017).

The paper is organized as follows: The remainder of this section discusses related literature.

Section 2 documents several new facts about the cross-section of CAPM β̂s. Section 3 illustrates

our proposed mechanism in a stylized model. Section 4 describes the data. Section 5 establishes a

causal link between benchmarking, CAPM β̂s, and the perceived cost of equity capital. Section 6

documents that benchmarking-induced changes in CAPM β̂ affect real outcomes at the firm- and

industry-level. Section 7 studies whether the CAPM β̂ distortions caused by benchmarking are

large enough to explain themissing investment puzzle at the aggregate-level. Section 8 concludes.

Related literature This paper contributes to several strands of literature, including the effects

of benchmark-linked investing on asset prices, corporate behavior, and capital (mis-)allocation.

The literature on benchmark-linked investing, starting with Shleifer (1986) and Harris and

Gurel (1986), established that stocks appreciate when included in an index and that stock volatil-

ity (Ben-David et al., 2018) and co-movement with the index (e.g, Barberis et al., 2005, Boyer,

2011) increase after benchmark inclusion (see Wurgler, 2010, for a survey). We provide causal

evidence that a stock’s benchmarking intensity affects its CAPM β̂ and document that the CAPM

β̂s increased in lockstep with benchmarking intensity over the past 25 years. We show that these

increases in CAPM β̂s are not due to changes in firm fundamentals, leverage, or risk exposure

as measured by cash flow βs. Rather, benchmark-linked capital flows drive a wedge between

7



measured CAPM βs and cash flow βs that is unrelated to the risk exposure of firms’ cash flows.
7

Basak and Pavlova (2013) provide a theoretical framework showing that performance bench-

marking of asset managers leads to asset class effects consistent with the observed benchmark

inclusion effects.
8
Kashyap et al. (2021) derive optimal corporate investment policies in the pres-

ence of benchmarked funds, arguing that firm managers should internalize the inelastic demand

for benchmark stocks and invest more to maximize firm value. We contribute to the discussion

about the effects of benchmarking on real investment in two ways: empirically, we provide causal

evidence that increases in benchmarking lead to a higher perceived cost of capital and lower in-

vestment. Conceptually, we introduce a behavioral argument that reconciles our findings with

Kashyap et al. (2021). We argue that firm managers, relying on textbook guidance to estimate the

cost of equity using the CAPM, fail to internalize benchmarking-induced asset price distortions.

This results in an overestimation of the cost of capital and a sub-optimal decline in investment,

ultimately destroying shareholder value.

We also contribute to the discussion about whether the rise of passive investing affects in-

formation production and price efficiency in the stock market.
9
Coles, Heath, and Ringgenberg

(2022) extend the model of Grossman and Stiglitz (1980) to incorporate index investing. In their

model, an exogenous increase in index investing leads to a drop in asset-specific information pro-

duction but to no change in price informativeness. Whereas the model of Bond and Garcia (2022)

predicts that, as passive investing becomes more popular, individual stock trading decreases, and

aggregate price efficiency falls. Empirically, Koijen, Richmond, and Yogo (2024) estimate that the

transition from active to passive management had a large impact on equity prices but a small im-

pact on price informativeness, as measured by cross-sectional regressions of future profitability

on current market-to-book ratios. We provide evidence that increased exposure to benchmarked-

linked capital flows affect the covariance of stock returns with the market and thus the discount

rates used by firm managers, stock analysts, and regulators. The fact that cash flow βs remain

stable while CAPM β̂ increase and firm managers respond by reducing investment implies that

revelatory price efficiency decreased (Bond, Edmans, and Goldstein, 2012). Consistent with our

results, Sammon (2024) shows that passive ownership negatively affects the degree to which

stock prices anticipate earnings announcements. Brogaard, Ringgenberg, and Sovich (2019) pro-

7
Relatedly, Kim (2025) studies discretionary risk-taking by active mutual fund managers which create correlated

demand shocks that can amplify a stock’s market risk. In contrast, we focus on benchmark-linked capital flows as
a source of correlated demand shocks, similar in spirit to the work of Greenwood and Thesmar (2011). Appendix B

documents that flows into passive mutual funds and ETFs predict cross-sectional changes in CAPM β̂.
8
See also Cuoco and Kaniel, 2011, Buffa, Vayanos, and Woolley, 2022, and Buffa and Hodor, 2023.

9
Our findings also relate to corporate governance and passive investing (Appel, Gormley, and Keim, 2016, Bebchuk,

Cohen, and Hirst, 2017, Heath, Macciocchi, Michaely, and Ringgenberg, 2021, Lewellen and Lewellen, 2022).
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vide evidence from commodity futures markets that index investing impacts the real economy

partly because it impedes the ability of agents to extract signals from market prices.

Additionally, our paper contributes to the literature on how firmmanagers set discount rates.

Despite the CAPM’s failure to explain the cross-section of expected stock returns (Fama and

French, 2004),
10

it reigns supreme in practice: Welch (2008) reports that about 75% of finance

professors recommend using the CAPM and the Duke CFO survey (Graham, 2022) finds that

the CAPM is the leading method to determine discount rates. Further evidence from earnings

calls (Gormsen and Huber, 2024), M&A transactions (Dessaint, Olivier, Otto, and Thesmar, 2020),

mutual funds (Berk and Van Binsbergen, 2016, Barber, Huang, and Odean, 2016), experiments

with professional investors (Bloomfield and Michaely, 2004, Merkle and Sextroh, 2021), and share

repurchases (Cho and Salarkia, 2022) shows that the CAPM is widely used in practice. We add

by documenting that benchmarking-induced CAPM distortions have first-order effects on the

discount rates that managers, analysts, and regulators use. We argue that these distortions have

become large enough over the past 25 years to affect the economy as a whole.

Despite the widespread use of the CAPM in practice, the effects of variation in CAPM β̂s

on investment are not widely studied. The literature primarily focuses on how the cost of debt

(Gilchrist and Zakrajšek, 2007, Philippon, 2009) or tax policy (Zwick andMahon, 2017, Mark, Gar-

rett, Ohrn, Roberts, and Suárez Serrato, 2021, Matray, 2023) affect investment. Notable exceptions

are Krüger, Landier, and Thesmar (2015) and Frank and Shen (2016). Krüger et al. (2015) docu-

ment investment distortions caused by the use of a single discount rate within firms. Using OLS

regressions, Frank and Shen (2016) find that higher contemporaneous CAPM β̂s are associated

with higher investment. In contrast, we use an IV approach to address the endogenous relation-

ship between CAPM βs and investment (Berk et al., 1999, Zhang, 2005, Kuehn and Schmid, 2014)

and forecasts the effects of CAPM distortions up to six years into the future. Consistent with

theoretical predictions, we find that exogenous increases in CAPM β̂s lead to lower investment.

Finally, we contribute to a nascent literature that uses subjective expectation about required

rates of return to revisit classic puzzles in asset pricing and corporate finance (Adam and Nagel,

2023). Gormsen and Huber (2023) document a widening gap between firms’ discount rates and

their perceived cost of capital, while Gormsen and Huber (2024) show that firms’ perceived

costs can diverge significantly from market-implied ones. Gormsen, Huber, and Oh (2024) show

that when climate concerns surged after 2016, green firms perceived their cost of capital to be

1 p.p. lower. Jensen (2024) finds that the CAPM explains subjective risk and return expectations

10
Berk, Green, and Naik (1999) show that stock returns need not satisfy the CAPM even when expected returns on

all individual projects do, since a firm’s stock also embeds real options to undertake new and abandon old projects.
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well but fails to explain realized returns because risk correlates with mispricing. We contribute by

showing that across six datasets, subjective expected returns closely follow CAPM predictions:

they are well explained by subjective βs and the market risk premium. However, we also find that

these expectations are distorted by benchmarking-induced variation in CAPM β̂s. Contrary to

the irrelevance result of Modigliani and Miller (1958), subjective expectations depend on capital

(ownership) structure, not just on the risk of underlying assets.

2 New Facts About CAPM β Estimates and Benchmarking

This section documents new facts about CAPM β̂s in the cross-section of U.S. stocks. Over the

past 25 years, CAPM β̂s and benchmarking intensity have increased in lockstep. Firms accounting

for over 40% of annual capital expenditures in Compustat experienced an increase in CAPM β̂.

Importantly, this increase is not driven by changes in fundamental risk—measured by cash flow

βs—or by shifts in leverage. Instead, we find systematic distortions in CAPM β̂s across market

capitalization ranks used in benchmark construction. This suggests that benchmarking affects

the measurement of CAPM βs—a hypothesis we test using causal inference methods in Section 5.

We use monthly estimates of benchmarking intensity (BMI) from Pavlova and Sikorskaya

(2023) from 1998 to 2018. BMI measures the amount of capital that inelastically demands the

equity of a publicly traded firm. The BMI for stock i in month t is defined as

BMIi,t =
J∑

j=1

λj,t × ωi,j,t

Market Capitalizationi,t

(1)

in which λj,t are the assets under management (AUM) of mutual funds and ETFs benchmarked

to index j and ωi,j,t is stock i’s weight in index j. We combine the BMI measure with estimates of

stocks’ CAPM βs. We use the estimator proposed by Welch (2022b) to calculate the market risk

exposure of all common U.S. stocks with respect to the CRSP value-weighted index.
11

We split

our sample into two periods: a pre-period from 1998 to 2002 and a post-period from 2003 to 2018.

We compare the distribution of conditional means of stocks’ BMI and CAPM β̂ across mar-

ket capitalization ranks. We fix a stock’s market capitalization rank at the end of May and plot

the stock’s BMI and CAPM β̂s from June to May of the following year against that rank. This

procedure mimics the construction of the Russell benchmark stock indices which are based on

11
The estimator first winsorizes daily stock returns at -2x and +4x the contemporaneous market return. It then esti-

mates β using WLS regression with exponentially decaying weights of 4-month half-life on an expanding window.

Welch (2022b) shows that this estimator outperforms other estimators in predicting future CAPM β̂s out of sample.

10



Figure 1: Benchmarking Intensity and CAPM Equity β̂E
vs. Market Capitalization Rank in May
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Notes: This figure shows binned scatter plots ofmonthly BMI and CAPMequity β̂E
againstMaymarket capitalization

ranks. Each bin reflects the equal-weighted average of 100 ranks. Conditional means are identified from cross-

sectional variation by absorbing year-month fixed effects. Outlined bins use data from 1998–2002; filled bins from

2003–2018. Shaded areas show 95% confidence bands with standard errors clustered by stock and year-month.

end of May market capitalization ranks and reconstitute every year in June. For example, the

Russell 3000, which comprises the largest 3000 stocks by market capitalization at the end of May.

Pavlova and Sikorskaya (2023) estimate that 72.6% of the average stock’s BMI is contributed by

funds benchmarked to Russell indices. Beyond this, market capitalization ranks in May hold no

inherent economic significance.

To analyze the raw data, we group stocks into bins of approximately 100 consecutive ranks.

For each bin, we calculate the equal-weighted mean of BMI and CAPM β̂. We use monthly data

and absorb year-month fixed effects to identify the conditionalmeans acrossmarket capitalization

ranks using only the cross-sectional variation within each month. We then plot pooled estimates

of the conditional means across market capitalization ranks for the pre- and post-periods using

the non-parametric binscatter methods developed by Cattaneo, Crump, Farrell, and Feng (2024).

Fact 1: Stocks’ benchmarking intensity correlates with CAPM β̂. Both stocks’ bench-

marking intensity and β̂s have increased markedly since 2003. Figure 1 shows binned scatter

plots of stocks’ monthly BMI (left panel) and CAPM β̂ (right panel) against market capitalization

ranks. Benchmarking intensity rose across the entire market capitalization spectrum, while β̂s

increased for nearly all ranks. Among Russell 2000 stocks (ranks 1000–3000), average BMI nearly

doubled—from 9.7% pre-2003 to 17.8% post-2003—while their β̂s rose by 46%, from 0.81 to 1.18.
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Figure 2: Differences in Benchmarking Intensity and CAPM Equity β̂E
Between Pre and Post

ρ(∆ BMI,∆ CAPM β̂) = 0.94
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Notes: This figure plots changes in average BMI (left axis) and CAPM equity β̂E
(right axis) between the pre-

(1998–2002) and post- (2003–2018) periods against May market capitalization ranks. Each bin shows the change in

conditional means from Figure 1. ρ(∆BMI,∆CAPM β) reports the correlation between changes in BMI and CAPM

β̂s. Error bars indicate pointwise 95% confidence intervals with standard errors clustered by stock and year-month.

Changes in the average benchmarking intensity and CAPM β̂ line up surprisingly well across

market capitalization ranks. Figure 2 plots the difference in conditional means of BMI and β̂s be-

tween the pre- and post-periods. Differences in BMI and CAPM β̂s across market capitalization

ranks are highly correlated (ρ=0.94). This strong correlation suggests that changes in benchmark-

ing intensity could be a key driver of changes in firms’ perceived risk exposure.

The distributions of BMI and CAPM β̂ in Figure 1 change visibly at Russell index cutoffs.

Average BMI and β̂s decline sharply around the cutoff for the Russell 3000. Similarly, both mea-

sures rise around rank 1000, the threshold between the Russell 1000 and 2000 indices. Appendix

Figure A1, which plots average BMI and β̂s separately for both indices, shows discrete jumps

around the threshold: Russell 2000 stocks have, on average, 5 p.p. higher BMI and 0.09 higher β̂

than Russell 1000 stocks. The figure also shows corresponding changes in firm managers’ per-

ceived cost of capital and hurdle rates (Gormsen and Huber, 2024) around the threshold. These

discontinuities suggest that market risk exposure and the perceived cost of equity depend on the

institutional design of benchmark indices. In Section 5, we exploit plausibly exogenous variation

in BMI due to index reconstitutions to identify the causal effect of benchmarking on CAPM β̂

and the perceived cost of equity capital.
12

12
Appendix Figure A2 shows robustness to estimating CAPM β̂s using daily, weekly, or monthly rolling windows.
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Figure 3: CAPM Asset β̂A
and Cash Flow β vs. Market Capitalization Rank in May
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Notes: This figure shows binned scatter plots of quarterly cash flow βs and CAPM asset β̂s against May market

capitalization ranks. Following Krüger et al. (2015), we unlever equity βs using β̂A = E
E+D × β̂E

, where E is the

market value of equity and D is book debt. Each bin represents the equal-weighted average of 100 ranks, with

conditional means identified from cross-sectional variation by absorbing year-quarter fixed effects. Outlined bins

use data from 1975–2002; filled bins use 2003–2018. Shaded areas show 95% confidence bands with standard errors

clustered by stock and year-quarter.

Fact 2: The increases in CAPM β̂s are not driven by changes in firms’ capital structure.
A potential concern is that changes in firms’ capital structure, rather than benchmarking, could

have caused the observed upward shift in equity β̂s. While it seems unlikely that systematic

changes in leverage would align with arbitrary market capitalization rank bins, we verify that

changes in β̂s are not due to systematic changes in leverage.

CAPM asset β̂s exhibit similar patterns as equity β̂s. The left panel of Figure 3 shows binned

scatter plots of stocks’ (unlevered) CAPM asset β̂s against market capitalization ranks for the

periods pre and post-2003. The average asset β̂ of Russell 2000 stocks increased by 0.29. We find

no evidence that changes in firms’ leverage are driving the observed changes in the cross-section

of stock’s CAPM β̂s. The figure also extends the pre-period back to 1975 to ensure our facts are

not driven by market dislocations during the Dot-Com boom. We find no evidence that either

changes in capital structure or the Dot-Com boom account for the observed patterns.

Fact 3: CAPM β̂s increased while fundamental risk exposure stayed constant. The in-

creases in CAPM β̂ are unrelated to changes in firms’ fundamental risk as measured by cash flow

βs. Figure 3 allows us to compare cash flow βs estimated from accounting data to CAPM asset βs
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estimated from stock market returns.
13

Cash flow βs remain stable across market capitalization

ranks in both periods, while unlevered CAPM β̂s show a significant increase post 2003. This is

particularly pronounced for Russell 2000 stocks, for which CAPM asset β̂s rose by an average of

0.29, while cash flow βs stayed constant. This suggests that the observed increase in CAPM β̂s

reflects distortions rather than changes in firms’ underlying cash flow risk.

3 A Stylized Model that Highlights the Mechanism

With these facts in hand, we present a stylized model that illustrates how distortions in CAPM

β̂s through their effect on discount rates affect corporate investment decisions. Every standard

corporate finance textbook instructs firm managers to implement investment policies that maxi-

mize firm value. The canonical guidance is to maximize net present value (NPV).
14
Firmmanagers

need two key components to calculate NPV: the expected cash flows and the discount rate to con-

vert future cash flows to present value. Most finance textbooks recommend using the weighted

average cost of capital (WACC) as discount rate and to estimate the CAPM β to determine the

cost of equity. The following stylized model highlights how the presence of benchmarked funds

distorts firms’ discount rates and thus affects capital allocation decisions.

Textbook investment policy Firm value Vi,t is determined by the net present value of its ex-

pected future cash flows {CFi,t+h}∞h=1 discounted at the firm-specific discount rate {Ri,t→t+h}∞h=1:

Vi,t = Et

[
∞∑
h=1

CFi,t+h

Ri,t→t+h

]
. (2)

The discount rate Ri,t→t+h equals the firm’s weighted average cost of capital, determined by

exposure to aggregate risk of the cash flows generated by the firm’s assets, βA
i , and the yield

curve of risk-free rates {Rf
t+h}∞h=1.

Ri,t→t+h =
h∏

j=1

(
Rf

t+j + βA
i ERPt+j

)
(3)

13
We follow Cohen, Polk, and Vuolteenaho (2009) and estimate cash flow βs as ROEi,t = αi+βCF

i ROEMkt,t+ εi,t.
ROE denotes the ratio of clean-surplus earnings (Xt = BEt − BEt−1 + Dt) to beginning-of-the-period book

equity (BEt−1). Dt are gross dividends computed from the difference between CRSP returns and returns excluding

dividends. We extend our analysis to the period from 1975 to 2018 since accounting information is only available

quarterly and compute βCF
i separately for each firm in Compustat using an expanding window of observations.

14
Graham, Harvey, and Puri (2015) show that CEOs and CFOs prioritize NPV in capital allocation decisions.

14



Assuming for simplicity that firm leverage remains constant over time and is sufficiently low to

not create default risk, the aggregate risk exposure of the firm’s cash flows is proportional to

exposure of the firm’s equity to the equity risk premium (ERPt):

βA
i =

βE
i

1 + (1− τ)Di

Ei

(4)

As such, it can be directly inferred from the empirical CAPM β of the firm’s equity β̂E
i = Ĉov(ri,rm)

V̂ar(rm)
.

A firmmanager considering a firm-typical project with costCi,t and future cash flows {yi,t+h}∞h=1

should invest in the project if it has positive NPV and thus increases firm value, that is if

Et

[
∞∑
h=1

yi,t+h

R̂i,t+h

]
= Et

 ∞∑
h=1

yit+h∏h
j=1

(
Rf

t+j +
β̂E
i

1+(1−τ)
Di
Ei

ERPt+j

)
 > Ci,t, (5)

in which R̂i,t results from substituting the empirical counterpart of (4) into (3).

The presence of benchmarked funds distorts asset prices. Kashyap et al. (2021) show

that benchmarked funds’ inelastic demand for benchmark constituents increases their price and

thereby lowers their implied discount rate. However, benchmarkmembership also induces excess

co-movement between constituents that is unrelated to the aggregate risk exposure of the firm’s

cash flows (Vijh, 1994, Barberis et al., 2005, Boyer, 2011).
15
The excess co-movement of benchmark

stocks increases β̂E
i and thus the discount rate proportional to the equity risk premium.

We illustrate the two opposing effects in reduced form by postulating two discount rate

wedges as functions of a stock’s benchmarking intensity (BMI). The price pressure from bench-

mark inclusion reduces the implied discount rate by∆I(BMIi,t). At the same time, βE
increases

to β̂E
i,t = βE

i +∆β(BMIi,t). Both∆I(BMIi,t) and∆β(BMIi,t)monotonically increase inBMIi,t

and satisfy ∆I(0) = ∆β(0) = 0.

The discount rate, adjusted for benchmarking distortions, that maximizes firm value is

R̃i,t→t+h =
h∏

j=1

(
Rf

t+j +
βE
i +∆β(BMIi,t)

1 + (1− τ)Di

Ei

ERPt+j −∆I(BMIi,t)

)
. (6)

CAPM investment policy with benchmarking distortions Whether the benchmarking

distortions to the discount rate in Eq. (6) cause firmmanagers to invest more or less is ambiguous.

15
See also Appendix D of Kashyap et al. (2021) for further details.
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The price effect of benchmark inclusion, ∆I(BMIi,t) (in blue) incentivizes investment, whereas

the increase in CAPM β̂, ∆β (in red), discourages investment. Empirically, positive price effects

at inclusion (see e.g., Chang et al., 2015) suggest that∆I(BMIi,t)may dominate in the short-run.

What if firm managers do not internalize the inelastic demand of benchmarked funds for in-

dex constituent stocks but instead follow textbook guidance and use the cost of capital implied by

the CAPM to evaluate investment opportunities as in Eq. (5)? In this case, the presence of bench-

marked funds has an unambiguously negative effect on investment for benchmark constituents.

Firm managers, with subjective expectations E⋆
t [·], observe an increase in their stock’s CAPM

β from βE
i to β̂E

i = βE
i + ∆β(BMIi,t) and infer an increase in the firm’s cost of capital. Firm

managers now invest only in projects that satisfy

E⋆
t

[
∞∑
h=1

yi,t+h

R̃i,t+h

]
= E⋆

t

 ∞∑
h=1

yi,t+h∏h
j=1

(
Rf

t+j +
βE
i +∆β(BMIi,t)

1+(1−τ)
Di
Ei

ERPt+j

)
 > Ci,t. (7)

All else equal, a firm inside a benchmark index invests less than the same firm outside the index.

Testable hypothesis Our proposed mechanism rests on the behavioral assumption that firm

managers do not internalize the total effect of benchmarking-induced discount rate distortions.

Instead, managers follow textbook guidance to form aweighted average cost of capital using their

firm’s empirical CAPM β̂s. Benchmarking-induced co-movement distorts the CAPM β̂s and leads

benchmark constituents to under-invest.

We empirically validate our mechanism by presenting evidence that supports three testable

hypotheses directly derived from it. All else equal,

(i) there is a monotonic positive relationship between changes in firm BMI and changes in β̂E
,

(ii) an increase in firm BMI increases the firm’s perceived cost of capital,

(iii) and leads to a decline in investment.

4 Data and Sample

We use five main sources in our empirical analysis: (1) the measure of benchmarking intensity

developed by Pavlova and Sikorskaya (2023), (2) estimates of firm CAPM β̂s from Welch (2022b),

(3) firm-level data from S&P’s Compustat North America Fundamentals, (4) data on firm man-

agers’ (Gormsen and Huber, 2024), stock analysts’, and regulators’ perceived cost of capital, and

(5) additional firm-level variables from various sources.
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Benchmarking intensity We use monthly estimates of benchmarking intensity from Pavlova

and Sikorskaya (2023) which cover 1998 to 2018. Similar to Pavlova and Sikorskaya (2023), we use

changes in BMI between the rank day of Russell indices in May and the reconstitution day in June

as an instrumental variable for changes in institutional ownership.
16
Changes in BMI satisfy the

relevance condition because they predict how benchmarked investors rebalance their portfolios

after a Russell index reconstitution. The exclusion restriction requires that index membership is

exogenous. The literature on benchmark inclusion effects argues that after controlling for factors

that determine benchmark inclusion, most importantly the ranking variable (market value) that

Russell uses for index assignment at the end of May, the index membership is exogenous.

Estimates of CAPM βs We use end-of-month estimates of the winsorized and exponentially

weighted CAPM β̂s from Welch (2022b), calculated using daily data against the CRSP value-

weighted index. The β estimator first winsorizes a firm’s daily stock return at –2 and +4 times

the contemporaneousmarket return, and then estimates an exponentially weighting least squares

regression of the stock’s (winsorized) excess return on the market excess return. The half-life of

the exponential decay is 90 trading days. Welch (2022b) shows that this estimator outperforms

other β estimators like Bloomberg’s β or the Vasicek (1973) β in predicting future market βs out

of sample. We focus on common equities that trade on either the NYSE, AMEX, or NASDAQ, and

exclude ADRs, REITs, and ETFs. Appendix Table A1 reports descriptive statistics for the matched

BMI-CAPM data covering 1998 to 2019.

Firm-level data We use annual data for publicly listed companies incorporated and located

in the U.S. from Compustat from 1998 to 2018. In the Compustat sample, we exclude financial

firms (SIC codes 6000-6999) and firms in regulated industries (4900-4999), as well as firms with

less than $50m in total assets or less than $10m sales (in 2017 dollars). Firms must have at least

five years of consecutive data. We winsorize the data at the 2.5% and 97.5% level.

Data on perceived cost of equity capital We source data on firm managers’ perceived cost

of capital from Gormsen and Huber (2024), who hand-collect these from earnings calls. We ad-

ditional obtain data on the perceived cost of equity capital from Morningstar Direct, data on the

perceived riskiness of stocks from Value Line, data on subjective expected returns from I/B/E/S

(for details see Appendix C) and data on perceived cost of equity for public utilities and railroads

(for details see Appendix C.2) .

16
For the average stock, approximately 72.6% of BMI is contributed by funds which are benchmarked to Russell

indices while 10.7% come from S&P 400/500 and 8.4% from CRSP indices. The remainders consists of other index

providers such as Dow Jones, FTSE, and Wilshire (Pavlova and Sikorskaya, 2023).
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Additional firm data We obtain stock returns and market data from the Center for Research

in Security Prices (CRSP). We use measures of firm-level intangible capital from Peters and Taylor

(2017). We collect Executive compensation peer group information from Institutional Shareholder

Services (ISS). We use firm-level risk measures from Hassan, Hollander, Van Lent, and Tahoun

(2019) and data on financial frictions from Hoberg and Maksimovic (2015) and Linn and Weagley

(2021). We obtain Governance scores from Sustainalytics, Refinitiv, and S&P and estimates of

stocks’ implied cost of capital (ICC) from Eskildsen et al. (2024).

5 Changes in Stocks’ CAPM βs Caused by Benchmarking

We estimate the causal effect of changes in a firm’s benchmarking intensity on its CAPM equity

β̂ using a difference-in-differences design. We compare the evolution of CAPM β̂s of (treated)

stocks that experience BMI changes around Russell index reconstitution dates to (control) stocks

that do not. The results show that changes in a stock’s BMI around index reconstitutions causally

change its CAPM β̂. This effect is symmetric andmonotonically increasing in treatment intensity.

A stock whose BMI increases (decreases) by at least 5 p.p. experiences an increase (decrease) in

CAPM β̂ by 0.18 (-0.23) relative to the control group. The change in CAPM β̂ persist for at least

7 years and only partly reverses over time.

Managers’ perceived cost of capital responds to benchmarking-induced increases in CAPM

β̂s. Using data from Gormsen and Huber (2024), we find that increases in BMI predict increases

in managers’ perceived cost of capital. We use changes in BMI as an IV to identify the causal

effect of changes in CAPM β̂s on a firm’s perceived cost of capital. The IV estimates imply that a

0.2 change in CAPM β̂ increases managers’ perceived cost of capital by approximately 70 bps.

We provide additional evidence fromfive alternative datasetswhich show that benchmarking-

induced increases in a stocks’ CAPM βs increase the perceived cost of equity capital. Independent

analysts from Morningstar, Value Line, and I/B/E/S report higher perceived equity costs follow-

ing an exogenous increase in a stock’s benchmarking intensity. Similarly, regulated monopolies,

including utilities and railroads, request higher cost of equity which regulators authorize. Across

datasets, CAPM-implied perceived equity risk premia range from 4% to 8% annually.

The effects of increases in benchmarking on CAPM β̂s are large and economically significant.

An increase of 0.2 in CAPM β translates to a 120 bps rise in the cost of equity capital, assuming

a 6% equity risk premium. The bias can have substantial implications for NPV calculations. For

instance, a firm investing in a project that generates $100 in perpetuity would value it at $1,000

with a 10% discount rate. However, increasing the discount rate to 11.2% reduces the project’s
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value to $893. Overestimating the WACC by just 1.2% leads to more than 10% undervaluation.

We analyze the effects of these distortions on firm- and industry-level investment in Section 6.

5.1 Difference-in-differences Strategy

Weanalyze the effect of an increase in BMI on a firm’s CAPM β̂ by estimating a series of difference-

in-differences specifications of the form:

CAPM β̂i,t = δ Treatedi × Postt>May + θi + θt,s + ζXi,t + εi,t (8)

in which Treatedi is an indicator variable for whether firm i’s BMI changed by more than±5 p.p..

The coefficient of interest, δ, summarizes the treatment effect on a firm’s CAPM β̂. We restrict

our sample to all stocks stocks within 300 ranks around the Russell index cutoffs to ensure we

capture only changes in BMI due to Russell index reconstitution.
17

The inclusion of firm fixed effects, θi, removes time-invariant heterogeneity across firms and

accounts for possible ex-ante differences between treated and control firms. Size-by-month or

liquidity-by-month fixed effects, θs,t, restrict the identifying variation to comparisons within the

same size or liquidity decile each period, controlling for time-varying unobserved heterogeneity

correlated with a firm’s CAPM β̂. We exclude stocks with market values below the fifth percentile

of the NYSE to ensure that micro-cap stocks do not drive the results.
18

We additionally include

stock-level controls, Xi,t, to improve precision. These are the stock’s monthly excess return, log

of trading volume, as well as the cumulative excess return over the past 12 and 24 months.

The Russell indices reconstitute each year, and identification in (8) thus exhibits staggered

treatment timing with potentially misleading estimates if the treatment effect is heterogeneous

between cohorts or over time (De Chaisemartin and d’Haultfoeuille, 2023). We follow the sug-

gestion of Baker, Larcker, and Wang (2022) to stack the yearly cohorts and include cohort by firm

and cohort by time fixed effects but suppress cohort subscripts for brevity.
19

Identifying assumptions and threats to identification. Our identification strategy relies

on the following assumption: conditional on the set of fixed effects and control variables, firms

that experience changes in BMI are not differentially exposed to unobservable shocks that corre-

late with BMI. The identification assumption does not require random assignment of benchmark

inclusion, nor does it require that firms have similar characteristics in levels. Rather, we rely on

17
Our findings are robust to changing the bandwidth to 100, 250, 500 ranks or not imposing restrictions.

18
We obtain similar results when using the 10th or 20th percentile of the NYSE as a cutoff (see Appendix Table A2).

19
See, e.g., Gormley and Matsa (2011), Cengiz, Dube, Lindner, and Zipperer (2019) and Deshpande and Li (2019) for

similar implementations of stacked difference-in-differences designs.
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Figure 4: Difference-in-differences Event Study of Changes in BMI on Changes in CAPM β̂E
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Notes: This figure shows difference-in-differences event study coefficients of Eq. (8). Change in CAPM β̂E
of treated

stocks with an increase or decrease in BMI of at least 5 p.p. relative to a control group, in which |∆ BMI| < 1 p.p..

Pointwise confidence intervals (99%) and sup-t confidence bands based on double-clustered standard errors. Values

in parentheses on the Y-axis show the average CAPM β̂E
before treatment.

20



Table 1: Causal Effects of Changes in Benchmarking Intensity on CAPM β̂s

Treatment Group: ∆ BMI > 5 p.p. ∆ BMI < -5 p.p.

(1) (2) (3) (4) (5) (6) (7) (8)

Treated × Post 9 Months 0.177
∗∗∗

0.178
∗∗∗

0.179
∗∗∗

0.180
∗∗∗

-0.232
∗∗∗

-0.232
∗∗∗

-0.226
∗∗∗

-0.230
∗∗∗

(0.024) (0.024) (0.023) (0.023) (0.022) (0.025) (0.021) (0.023)

Momentum Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects

Firm × Cohort ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time × Cohort ✓ ✓
Rank Decile × Time × Cohort ✓ ✓
Volume Decile × Time × Cohort ✓ ✓
Shrs. Out. Decile × Time × Cohort ✓ ✓

Observations 127,285 127,242 127,158 127,175 128,427 128,387 128,284 128,292

Notes: This table reports δ̂ for specifications of the form: CAPM β̂i,t = δ Treatedi × Postt>May + θi + θt,s + εi,t. Treated×Post is average of post-

treatment coefficients after 9 months (to account for the expanding-window estimation of CAPM β̂). Control group are firms with |∆BMI| <1 p.p..

Estimation sample is restricted to stocks within 300 ranks around Russell index cutoffs. Standard errors in parentheses are double-clustered at stock

and year-month level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

the parallel trends assumption that CAPM β̂s for treated and control firms would have trended

similarly absent an increase in BMI. We provide supporting evidence of parallel pre-treatment

trends in Figures 4a and 4b and additionally perform a placebo test in Figure A4. As expected,

this placebo test finds no treatment effect.

Results Figures 4a and 4b show the event study coefficients of our difference-in-differences

estimation for treatments defined as an increase or decrease in BMI of 5 p.p., respectively. We

normalize the dynamic treatment effect to zero in May and estimate dynamic treatment effects

for the period from 9 months before to 12 months after benchmark inclusion.

Several facts are worth noting. First, the CAPM β̂s of treated and control firms evolve in

close parallel before index reconstitution, supporting the identification assumption and causal

interpretation of treatment effects. The p-values for the Wald-style pre-trend test suggested by

Freyaldenhoven, Hansen, Pérez, and Shapiro (2021) are 1.00 and 0.93, respectively. Second, after

index reconstitution, CAPM β̂s begin to diverge for both increases and decreases in BMI. The

smooth event-time trend in Figure 4 is largely mechanical as older information receives expo-

nentially smaller weights.
20
The treatment effect of a BMI increase on a firm’s CAPM β̂ is likely

immediate, but our measurement captures it only once older information is sufficiently down-

weighted. Third, treatment effects for BMI increases and decreases of at least 5 p.p. have similar

magnitudes but opposite signs, suggesting that treatment effects are linear in BMI.

Table 1 reports the average estimated post-shock coefficient. We report the average treat-

ment effect nine months after treatment to ensure that the majority of the data used to estimate

20
The β estimator uses an expanding-window with exponential weights of 4.5 months half-life.
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CAPM β̂s reflects the post-treatment period. By this point, post-treatment data accounts for ap-

proximately three-quarters of the weighting in the estimation. The coefficient estimate for the

interaction Treatedi × Postt>May is positive for increases in BMI and negative for decreases in

BMI, with treatment effects always statistically significant at the 0.1% level. Columns (1) and

(5) present results with firm and year-month fixed effects, while subsequent columns add more

granular fixed effects by year-month, market capitalization rank, volume, or shares outstanding.

These fixed effects control for potential size or liquidity differences between treated and control

firms. The estimated effects of BMI changes remain stable across different fixed effects. Column

(2) shows that a BMI increase of at least 5 p.p. raises a firm’s CAPM β̂ by 0.18, while Column (6)

shows that a decrease in BMI by at least 5 p.p. lowers a firm’s CAPM β̂ by -0.23.

The estimates of the average treatment effect in Table 1 mask substantial heterogeneity. Ap-

pendix Figure A3 plots the event-time coefficients for three different treatment intensities. Treat-

ment levels are defined in increasing order of treatment intensity as changes in BMI by 5 p.p. to 10

p.p., 10 p.p. to 20 p.p., and greater than 20 p.p.. The estimated treatment effect is 0.15 for the lowest

treatment intensity, 0.24 for the medium treatment intensity, and 0.35 for the highest treatment

intensity after 12 months. The treatment effects are statistically significant at the 0.1% level for

all treatment intensities. For firms in the highest treatment intensity group, the treatment effect

is 0.35, equivalent to a 210 bps increase in the cost of equity capital.

What causes the increases in CAPM β̂? The difference-in-differences results above show

that exogenous increases in benchmarking intensity due to index reconstitution raise stocks’

CAPM β̂s. While the proximate cause of this effect is the rise in benchmarking intensity, we

posit that the fundamental driver is likely the inelastic demand by passive index funds. Recall

that BMI captures the total inelastic demand a stock attracts from benchmarked active and pas-

sive mutual funds and ETFs. Since passive funds have by definition inelastic demand for bench-

mark stocks, changes in passive flows likely exert a strong influence on returns and CAPM β̂s.

Kim (2025) proposes a complementary mechanism wherein discretionary risk-taking by active
managers increases a stock’s market risk.

Appendix B.1 examines the link between flows into passive mutual fund and cross-sectional

increases in CAPM β̂. UsingMorningstar Direct data, we analyze the effect of net flows into active

and passive mutual funds on CAPM β̂. Our panel regression show that net flows into passive

fund significantly increase β̂, particularly for stocks ranked below 1000 in market capitalization,

where passive ownership is more concentrated (Pavlova and Sikorskaya, 2023). A two-standard-

deviation net inflow into passive funds raises the β̂ of the smallest stocks by 0.06, while active fund

flows have negligible and often statistically insignificant effects. The relationship between passive
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flows and CAPM β̂ appears to have changed over time. Before 2010, benchmarking intensity

(BMI) served as a key channel through which passive investing affected β̂s, while after 2010,

the effect operates more directly through observed passive flows. This suggests that BMI is a

reasonable proxy for passive flows in earlier periods when official data on passive ownership is

less comprehensive.

In Appendix B.2, we use simulations to show that the emergence of a passive flow factor can

explain the evolution of CAPM β̂s from 1998 to 2018. We propose a simple two-factor model. In

thismodel, a stock’s CAPM β̂ depends on a fundamental factor and a flow factor. The fundamental

factor summarizes key macro-financial variables. Its loadings are fixed to the distribution of β̂

observed in 1990, before passive investing became widespread. The flow factor captures net flows

into passive mutual funds and ETFs. Stocks’ benchmarking intensity proxies their exposure to

this flow factor. Our simulations show that a passive flow factor successfully captures the cross-

sectional and time-series patterns of CAPM β̂s. When calibrated with passive flows, the model

closely matches the empirical distribution of β̂s. Flows into active funds fail to replicate the

empirical patterns.

This evidence suggests that the fundamental cause which increases CAPM β̂s is the shift to-

ward passive index investing. Since 1998, cumulative net flows into passive funds have exceeded

those into active funds by more than $10 trillion (see Appendix Figure B10).
21
We show through

both panel regressions and a simulation exercise that these passive flows can explain the time

series and cross-sectional evolution of CAPM β̂s.

Alternative CAPM β estimators To verify that our results are not driven by the choice of β

estimator, we estimate a series of OLS regressions for a set of alternative estimators. Appendix

Table A3 shows OLS regressions results using different estimators for the unknown CAPM β. We

compare the usual OLS estimator with alternative estimators proposed by Blume (1975), Dimson

(1979), andWelch (2022b). We also report estimates of the β̂ with the ten largest stocks by market

capitalization, and correlationwith themarket and idiosyncratic volatility. We find that all CAPM
β̂ estimators show a statistically significant association with changes in BMI. Changes in β̂ occur

due to changes in market correlation, not because of increases in idiosyncratic volatility. This

aligns with Antón and Polk (2014), who show that mutual funds’ common ownership increases

return correlation of equities.

21
In 2024 passive funds surpassed active funds in total net assets for the first time. While official data from 2021 indi-

cate that index funds held 16% of the U.S. stock market, Chinco and Sammon (2024) estimate that the true passive

ownership share is nearly twice as high when accounting for institutions managing index portfolios internally and

active managers engaging in quasi-indexing.
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5.2 Persistence of Effects andChanges in Stock’s ImpliedCost ofCapital

Weassume thatmanagers use the CAPM to set discount rates and do not account for the distorting

effects of benchmarking on stock prices. Alternatively, managers might infer the discount rate

from stock prices and expected cash flows, as in Kashyap et al. (2021). We test whether BMI

changes at index reconstitution influence the implied cost of capital (ICC) that managers could

infer from stock prices. The ICC, based on current stock prices, captures any price distortion

from benchmarking. Following Eskildsen et al. (2024),
22
we calculate the ICC by averaging four

popular models from the accounting literature: the residual income models from Gebhardt et al.

(2001) and Claus and Thomas (2001), and the dividend discount models from Easton (2004) and

Ohlson and Juettner-Nauroth (2005). The ICC only captures the implied cost of equity, we thus

compare it to the cost of equity implied by the CAPM.

We examine whether benchmarking distortions persist over long horizons. Our difference-

in-differences analysis shows that BMI distortions in CAPM β̂s persist for at least 12 months.

If these distortions in the cost of equity fade after a year, long-term effects on investment are

unlikely. We extend our analysis to test for effects on the ICC and CAPM β̂s over a seven-year

horizon using the following specifications:

Avg. ICCi,t+h = θh0 + θh1∆BMIi,t + ξhXi,t + εi,t+h, h = 0, . . . , 7, (9)

CAPM β̂i,t+h × 6% = γh
0 + γh

1∆BMIi,t + ζhXi,t + νi,t+h, h = 0, . . . , 7. (10)

for firm i in year t+h. The coefficients of interest, γh
1 and θ

h
1 , summarize the long-term effects of an

BMI increase on a firm’s CAPM β̂ or ICC after h years, respectively. The vectorXi,t contains year-

by-industry fixed effects and the lagged level of BMI. We scale the estimates to a 10 p.p. increase

in BMI for ease of interpretation and adjust the CAPM estimates to match the units of the ICC

estimates by multiplying them by a 6% ERP. We focus on stocks in the 300 ranks around the

Russell index cutoffs.

Results Figure 5 shows estimates for γh
1 and θh1 of Eq. (10) and (10), respectively. The dis-

tortionary effects of BMI increases on CAPM β̂s persist for at least 7 years. At each forecast

horizon, we find statistically significant positive effects of BMI increases on CAPM β̂s. These

effects gradually diminish over time but remain economically significant. One year after the ini-

tial BMI increase, the cost of equity capital is 125 bps higher. Four years later, it remains 71 bps

higher, and even seven years later, it is still 67 bps higher. This prolonged impact suggests that

22
Using these measures, Eskildsen et al. (2024) estimate a negative annual green equity premium. Similarly, Kontz

(2023) estimates a positive green convenience yield in auto asset-backed securities.
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Figure 5: Persistence of BMI Shock on the Cost of Equity Capital Over Long Horizons
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Notes: This figure shows the persistence of BMI shocks on estimates of firms’ cost of equity for ICC and CAPM using

regression of the form: CAPM β̂i,t+h = γh
0 + γh

1∆BMIi,t + εi,t+h. Estimation sample is restricted to stocks within

300 ranks around Russell index cutoffs. Estimates are scaled to a 10 p.p. BMI increase. 99% confidence intervals based

on standard errors clustered at stock and year. Value in parentheses on the Y-axis is the median ICC over the sample.

benchmarking has a long-term effect on firms’ perceived cost of capital, potentially leading to

sustained changes in investment behavior.

In contrast, changes in BMI have only short-lived effects on the implied cost of capital. The

estimates for the year of benchmark inclusion show that the ICC decreases by approximately 36

bps. We perform a back-of-the-envelope calculation to estimate the implied stock return at bench-

mark inclusion using Gordon’s growth model.
23

The 36 bps decrease in the ICC at benchmark

inclusion implies a 5.24% increase in the stock price, close to the 5% documented by Chang et al.

(2015). However, the effect on the ICC fades to 14 bps after one year and becomes statistically

insignificant thereafter.

The small and short-lived impact on the ICC makes it unlikely that increased benchmark-

ing affects investment through a price-level channel. A firm’s cost of capital is a long-term rate,

unaffected by short-term price effects (Berk and Van Binsbergen, 2025). Only permanent price

changes affect the cost of capital, while much of the demand-driven price effect appears tem-

porary (see also Harris and Gurel, 1986). Moreover, the temporary price effect of benchmark

23
We assume the expected dividend, D1, and expected dividend growth rate, g, remain constant when BMI

changes, but r changes by θ̂01 × ∆BMI. The implied stock return is given by:
PPost

PPre − 1 =
−θ̂0

1×∆ BMI

r+θ̂0
1×∆ BMI−g

=

0.36%
8.9%−0.36%−1.6% ≈ 5.24%. We set r to the pre-benchmark inclusion average of the ICC (≈8.9%), g to the long-run
average of real dividend growth (≈1.6%), and ∆BMI to 10 p.p (as in Figure 5).
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inclusion seems to have all but disappeared: Greenwood and Sammon (2024) show that the price

effect of joining the S&P 500 has fallen from an average of 7.4% in the 1990s to less than 1% over

the past decade. Chang et al. (2015) similarly document that the price impact of inclusion in the

Russell benchmarks has decreased over time.

5.3 Changes in CAPM β and Manager’s Perceived Cost of Capital

We document that changes in the CAPM β̂ affect the perceived cost of capital of firm managers,

using firm’s self-reported data collected from earnings calls by Gormsen and Huber (2023). We

estimate the pass-through of changes in a firm’s CAPM β̂ on the perceived cost of capital using

a series of instrumental variable (IV) regressions of the following form:

∆ CAPM βi,t = δi + δj,t + θ∆ BMIi,t + ϵi,t (11)

∆ Perceived Cost of Capitali,t = αi + αj,t + γ

p∑
s=0

p+ 1− s

p+ 1
∆ CAPM β̂i,t−s + εi,t ; p = 4 (12)

in which the coefficient of interest is the cumulative effect, λ = γ(1+ p
2
), which provides us with

an estimate of the pass-through of changes in a firm’s CAPM β̂ to its perceived cost of capital.

Including firm fixed effects αi ensures we remove time-invariant heterogeneity across firms, and,

in particular, accounts for possible ex-ante differences in pass-through rates between treated and

control firms. Size-by-year or industry-by-year fixed effects, αj,t, further restrict the identifying

variation to comparing firms within the same size decile, liquidity decile, or industry each period.

We use a (restricted) distributed lag model in Eq. (12) for both economic and econometric

reasons. Managers typically estimate CAPM β̂ using OLS regressions using two to five years

windows. Rolling-window estimators gradually incorporate changes in CAPM β̂ into managers’

perceived cost of capital as new data becomes available. Gormsen andHuber (2023) show that this

perceived cost of capital affects managers’ required returns on new investments and investment

decisions, with a transmission lag of several years.
24

We restrict the shape of the lag weights in

Eq. (12) to be linearly declining with horizon t − q to economize on parameters. Restricting the

shape of the lag weights also allows us to report a interpretable first stage F-statistic which is

important for the validity of the IV estimates. Appendix Table A5 shows that one obtains similar

results using an unrestricted distributed lag model. We further restrict the sample to be within

400 ranks around Russell index cutoffs to ensure that the treatment effect is related to changes in

24
Additionally, the data supports a distributed lag model over a contemporaneous effect model, with Bayesian infor-

mation criterion (BIC) values favoring fourth-order lags (see Appendix Table A4).
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Table 2: Effect of∆ CAPM β̂ onManagers’ Perceived Cost of Capital (Gormsen and Huber, 2024)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent variable: ∆ Perceived Cost of Capital (in p.p.)

∆ BMI (in p.p.) 0.007
+

0.009
∗

0.011
∗

(0.003) (0.003) (0.004)

∆ CAPM βA
1.044

∗∗∗
0.998

∗∗∗
0.833

∗∗∗
2.424

+
3.588

∗
3.270

∗

(0.182) (0.163) (0.141) (1.328) (1.409) (1.444)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓
Size Quartile × Year FE ✓ ✓ ✓
Industry × Year FE ✓ ✓ ✓

FS F-stat. 38.7 29.9 54.6

Adj. R
2

0.14 0.16 0.34 0.15 0.16 0.34

Observations 10,130 10,130 9,329 10,130 10,130 9,329 10,130 10,130 9,329

Notes: This table reports the cumulative effect λ = γ(1 + p
2 ) from specifications of the following restricted distributed lag model:

∆Perc. Cost of Capitali,t = αi+αj,t+γ
∑p

s=0
p+1−s
p+1 ∆ CAPM β̂i,t−s+εi,t in which p = 4 for reduced form, OLS, and IV regression

in which the instrument is ∆BMI for stock i in year t. IV estimated via LIML. Estimation sample is restricted to stocks within 400

ranks around Russell index cutoffs. Standard errors in parentheses are clustered at firm-level. + p<0.10, * p<0.05, ** p<0.01, ***

p<0.001.

BMI due to Russell index reconstitution. This results in an average of 622 stocks per year in the

estimation sample. Smaller windows around the Russell index cutoffs (e.g., +/- 300 ranks) yield

similar albeit somewhat noisier results (available upon request).

A firm’s perceived cost of capital and its stock’s CAPM β are jointly determined by its expo-

sure to aggregate risk in equilibrium. To address endogeneity and measurement error, we use an

instrumental variable approach, with BMI change as a natural instrument. BMI changes induce

CAPM β̂ changes orthogonal to aggregate risk as shown by the difference-in-differences results.

The exclusion restriction requires that BMI increases affect a firm’s perceived cost of capital only

through changes in its CAPM β. This could be violated if BMI impacts perceived cost through

other channels, like reducing credit spreads due to reputational effects. However, in Appendix D,

we find no evidence that BMI changes correlate with risk, financial constraints, or governance

changes, supporting the validity of the exclusion restriction.

Table 2 reports coefficient estimates of Eq. (12) for reduced form (RF), OLS, and IV specifica-

tions. Columns (1) to (3) report RF, columns (4) to (6) OLS, and columns (7) to (9) IV estimates.

The coefficients are positive, stable across specifications, and statistically significant. Columns

(1) to (3) of Table 2 show that increases in BMI predict increases in managers’ perceived cost of

capital. OLS estimates show a downward bias relative to IV estimates, likely due to classical mea-

surement error. Two mechanisms introduce measurement error. First, we do not observe how
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firms estimate their CAPM β̂ when calculating their perceived cost of capital. We use the CAPM

β̂s of Welch (2022b) due to their superior performance in predicting future CAPM β̂s out of sam-

ple. In practice, firms often simply estimate CAPM β̂s using equally-weighted observations on a

rolling window of two to five years (Berk and DeMarzo, 2023). Second, any empirical CAPM β̂ is

an estimate of the true CAPM β and thus subject to measurement error.

The IV estimates in Column 8 and 9 of Table 2 imply that managers use a perceived equity risk

premium between 3.2% to 3.6%, very close to the average equity risk premium of 3.6% reported

by CFOs in the survey by Graham and Harvey (2018) from 2000 to 2017.

5.4 Other Perceived Cost of Equity Measures

We corroborate our findings on the pass-through of benchmarking-induced changes in the CAPM

β̂ to perceived cost of capital using several alternative measures. Specifically, we focus on two

qualitative measures of perceived equity riskiness by stock analysts: (1) Morningstar’s cost of eq-

uity, which reflects Morningstar’s qualitative assessment of systematic risk, and (2) Value Line’s

safety rank, a subjective rating ranging from 1 (safest) to 5 (riskiest), capturing analysts’ evalua-

tions of price stability and firm financial strength. Following Eskildsen et al. (2024), we convert

Value Line’s rank into a required return on equity by multiplying it by 1.5 p.p. Additionally, we

examine whether benchmarking influences subjective return expectations derived from I/B/E/S

consensus price targets and dividend forecasts.
25
Appendix C provides further details on the data

and supplementary results.

We estimate whether exogenous increases in benchmarking intensity affect stock analysts’

perceived cost of equity using specifications of the following form:

∆ Perceived Cost of Equityi,t = αt + λ ∆ CAPM β
∧

i,t + εi,t (13)

in which we instrument changes in CAPM β̂ with changes in BMI due to the Russell index re-

constitution between May and June. The year fixed effect, αt, identifies λ using cross-sectional

variation. We again restrict the estimation sample to +/- 400 ranks around Russell index cutoffs.

Note that a stock’s CAPM β̂ does not directly enter (13). The analysts’ perceived equity risk pre-

mium is given by λ̂ = π̂/τ̂ in which π̂ is the reduced form coefficient of BMI on authorized cost

25
Note that the subjective return expectations contain both perceived cost of equity capital as well as potentially

perceived mispricing (Jensen, 2024).
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Table 3: Effect of ∆ BMI and ∆ CAPM β̂ on Stock Analysts’ Perceived Cost of Equity Capital

∆Morningstar Cost of Equity (in p.p.) Value Line Safety Rank × 1.5 p.p. ∆ I/B/E/S Expected Return (in p.p.)

RF IV RF IV RF IV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ BMI (in p.p.) 0.046
∗∗∗

0.037
∗∗

0.032
∗∗∗

0.033
∗∗∗

0.078
∗

0.075
∗

(0.013) (0.013) (0.009) (0.010) (0.039) (0.036)

∆ CAPM β
∧

5.548
∗∗

5.432
∗

4.663
∗∗

4.405
∗

7.914
∗

7.664
∗

(1.999) (2.467) (1.804) (1.709) (3.695) (3.609)

Mom. (Cum. Ret.) -0.298
∗∗∗

-0.193
∗∗

0.015 -0.359
∗

0.410
∗∗∗

0.388
∗∗∗

(0.035) (0.072) (0.031) (0.166) (0.044) (0.056)

Mkt. Cap. Rank -0.019
∗∗∗

-0.021
∗∗

0.034
∗∗∗

0.036
∗∗∗

-0.036 -0.039

(0.004) (0.007) (0.004) (0.005) (0.029) (0.032)

Fixed Effects
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.08 0.10 0.02 0.08 0.21 0.23

FS F-stat. 16.9 10.4 11.0 10.6 100.6 111.8

Observations 4,026 3,932 4,026 3,932 2,524 2,504 2,363 2,361 7,731 7,671 6,769 6,718

Notes: This table report estimates for specifications of the form: ∆ Perceived Cost of Equityi,t = αt+λ∆ CAPM β
∧

i,t+εi,t for IV regression in which the instrument

is ∆ BMI between May and June for stock i in year t. RF columns report reduced form and IV report instrumental variable estimates. Change in Morningstar cost

of equity from Q4 to Q4. Value Line’s safety rank is converted to a required return on equity by multiplying it by 1.5 (p.p.) (Eskildsen et al., 2024). Change in I/B/E/S

expected return from Q2 to Q4 based on consensus price and dividend forecast over the next 12 months. Estimation samples are restricted to stocks within 400 ranks

around Russell index cutoffs. Even columns control for momentum (cumulative return over the past 12 months) and market capitalization rank (dividend by 100) at

the end of May. IV estimated via LIML. Standard errors in parentheses are clustered at the stock-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

of equity and and τ̂ is the first stage coefficient of BMI on CAPM β̂.26

Table 3 shows that exogenous increases in a stock’s BMI increase analysts’ perceived risk

and return expectations. The IV specifications of (13) imply perceived equity risk premia be-

tween 4.4% and 7.9% across the three datasets. Marketing material by Morningstar (2022, page

4f) suggests that their analysts use a perceived equity risk premium of 4.5%. Our point estimates

are 1 p.p. higher but not statistically different from 4.5%. The perceived equity risk premium im-

plied by the I/B/E/S analysts’ expected returns is somewhat higher the those implied by Value

Line and Morningstar. This is likely due to the unconditional upward bias in analysts’ target

prices documented by Brav and Lehavy (2003). Results in even columns confirm that the results

continue to hold after accounting for momentum (cumulative returns over past 12 months) and

the stock’s market capitalization rank in May. Similar to Greenwood and Shleifer (2014) and

Nagel and Xu (2022), we find that past returns exert a positive influence on subjective expected

excess returns.

26
Appendix Figure C14 plots the CAPM security market line using stock analysts’ subjective expected returns using

the CAPM β̂ directly. The slope implies a 6.3% annual equity risk premium with an adj. R
2
of 0.22. Similarly, Value

Line’s CAPM β̂s explain more than 20% of the variation in Value Line’s safety ranks.

29
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5.5 Additional Evidence from Regulated Monopolies

This subsection provides further evidence that increased benchmarking affects the perceived cost

of equity. Specifically, we test whether regulated monopolies perceive a higher cost of equity

when their CAPM β̂ increases due to benchmarking. Regulated monopolies like public utili-

ties and railroads in the U.S. are subject to rate-of-return regulation which allows firms to pass

on changes in their cost of capital to consumers. The legislative basis for this is U.S. Supreme

Court (1944) in Federal Power Commission v. Hope Natural Gas Co. which ruled that a regulated

monopoly’s “[...] return to the equity owner should be commensurate with returns on invest-

ments in other enterprises having corresponding risks.” Today, state and federal regulators usu-

ally implement the CAPM or a version of the DCF model to estimate the cost of equity capital.

Appendix C.2 describes the regulatory rate-setting process and data sources, drawing on Kontz

(2025), which analyzes how the growth of passive investing impacts regulated monopolies’ cost

of equity and consumer energy prices.

Public utilities We collect data on the perceived cost of equity (CoE) authorized by U.S. state’s

public utility commissions. We test whether the authorized CoE is affected by benchmarking

using IV specifications of the following form:

Authorized CoEi,t − rft = αi + λ CAPM β
∧

i,t + φ
(
DCF Implied CoE − rf

)
+ εi,t, (14)

in which we control for the DCF implied cost of equity and estimate the regulator’s perceived

equity risk premium, λ, using the utility’s benchmarking intensity as an instrument. We include

utility-by-state fixed effects, αi, which absorb time-invariant unobserved heterogeneity across

utility-state pairs. Identification of λ and φ thus relies on within-utility time-series variation.

Table 4 reports coefficient estimates of Eq. (14). Columns 1 and 2 show that a higher bench-

marking intensity predicts a higher authorized cost of equity. A 10 p.p. higher benchmarking

intensity translates into a 70 bps higher authorized cost of equity. Columns 3 and 4 translate the

reduced form coefficient into the perceived CAPM implied equity risk premium by instrumenting

β̂ with BMI. The IV estimates imply a risk premium of around 6.1%. Our estimate is close to the

historical equity risk premium observed in the U.S. which is often used in regulatory proceedings.

Regulatory practice often permits or mandates that a public utility’s cost of equity, in addition

to the CAPM, also be estimated using a discounted cash flow (DCF) method. The even-numbered

columns in Table 4 show that our results remain robust when accounting for the DCF-implied risk

premium. While the DCF risk premium explains a substantial share of the variation in authorized

risk premia, its inclusion has only a negligible effect on the BMI coefficient. This suggests that
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Table 4: Regulated Monopolies’ Cost of Equity Capital and Benchmarking Intensity

Dependent Variable: Authorized Cost of Equity − rf

Public Utilities Railroads

RF IV RF IV

(1) (2) (3) (4) (5) (6) (7) (8)

BMI (in %) 0.069
∗∗∗

0.071
∗∗∗

0.481
∗∗∗

0.454
∗∗∗

(0.011) (0.011) (0.099) (0.088)

CAPM βE
∧

6.064
∗∗

6.189
∗∗∗

6.462
∗∗∗

6.481
∗∗∗

(1.386) (1.375) (0.331) (0.361)

DCF implied Cost of Equity − rf 0.281
∗∗∗

0.170
∗

0.654
∗

-0.035

(0.051) (0.083) (0.327) (0.072)

Fixed Effects
Utility × State FE ✓ ✓ ✓ ✓

Adj. R
2

0.26 0.43 0.48 0.60

FS F-stat. 42.5 45.4 23.1 25.4

Observations 1,052 1,052 1,052 1,052 21 21 21 21

Notes: This table reports coefficient estimates of the form: Authorized CoEi,t− rft = αi+λ CAPM β
∧

i,t+φ
(
DCF Implied CoE − rf

)
+ εi,t

for rate regulated public utilities’ and railroads’ authorized cost of equity. Data for authorized cost of equity capital for public utilities and

railroads are from Regulatory Research Associates and from the Surface Transportation Board, respectively. CAPM β̂ are based on weekly

return data as usual in regulatory proceedings. Standard errors in parentheses are clustered at utility-level for public utilities and Newey-

West with 5 lags for railroads. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

omitted variable bias is unlikely to be a concern (Oster, 2017).

Appendix Table C11 shows that benchmarking intensity does not correlate with the autho-

rized cost of debt of public utilities. In contrast, controls for aggregate credit market conditions,

such as the BBB option-adjusted spread, exhibit a highly significant correlation with both re-

quested and authorized cost of debt. This provides confidence that BMI serves as a valid instru-

ment for the cost of equity by influencing CAPM β̂s while not affecting the cost of capital through

other channels.

Railroads We obtain data on the cost of equity for regulated railroads from the Surface Trans-

portation Board (STB). The STB sets an industry-wide annual cost of equity capital, rather than

firm-specific rates. We thus only have a limited number of yearly observations. However, the

STB data offers a granular view of the regulatory rate-setting process: the STB reports the risk-

free rate, CAPM β̂, and equity risk premium used to determine the industry-wide cost of equity.

Importantly, the STB’s equity risk premium enables us to assess the accuracy of our IV-implied

estimates. We combine the STB data with the average BMI of publicly traded railroad companies.

Columns (5) to (8) of Table 4 report results for the railroad industry. Benchmarking intensity

strongly predicts the authorized cost of equity, even after controlling for the DCF-implied cost.

The IV estimates imply a perceived CAPM equity risk premium of 6.4% annually—statistically
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indistinguishable from the average 6.85% applied by the STB over the sample period.

6 Effects of CAPM β Distortions on Capital Accumulation

Our second set of results estimates how firms react to changes in their CAPM β induced by

changes in BMI. For a firm manager who follows textbook guidance to set investment policies

using the CAPM, an increase in CAPM β̂ raises the user cost of capital and should lead to a decline

in investment. We therefore test whether changes in CAPM β̂ affect firm outcomes like capital

expenditure, physical and intangible capital stocks, cash holdings, payouts, and employment.

The firm-level results show that firms react to BMI-induced changes in their CAPM β̂ by

reducing investment. Specifically, capital expenditure declines by 10.0% over six years, and phys-

ical and intangible capital stocks are 7.1% and 8.4% lower, respectively. Firms initially accumulate

cash and then increase payouts to shareholders. The findings are robust to the inclusion of other

known predictors of investment like firm size, cash flow, and Tobin’s Q.

We find supporting evidence at the industry-level: industries with higher CAPM βs due to

higher benchmarking intensity have lower capital accumulation from 2000 to 2016. The results

are robust to the inclusion of industry pre-trends and sectoral fixed effects. Furthermore, we

show that dispersion in within-industry marginal products of capital are increasingly explained

by benchmarking-induced dispersion in within-industry CAPM β̂s. This suggests that the CAPM

β̂s distortions caused by benchmarking affect allocative efficiency.

The capital accumulation results at firm- and industry-level are consistent with the predic-

tions of our augmented neoclassical investment model, in which firms adjust investment in re-

sponse to changes in their perceived cost of capital implied by the CAPM.

6.1 Effects of Increased Benchmarking at the Firm-level

We use an instrumental variable (IV) local projections (LP) strategy to forecast the effects of a

change in CAPM β̂ on capital allocation over horizons of up to 6 years.
27
We instrument changes

in CAPM β̂ with plausibly exogenous changes in benchmarking intensity caused by Russell index

reconstitutions to identify the causal effects of benchmarking distortions on investment.

To analyze the effect of BMI-induced changes in a firm’s CAPM β̂ on real outcomes, we

27
Similarly, researchers often use LP-IVs to study the effects of monetary policy on investment or asset prices (e.g.,

in Jordà, Schularick, and Taylor, 2020, Kroen, Liu, Mian, and Sufi, 2021, and Bauer and Swanson, 2023).
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estimate a series of local projection instrumental variable regressions of the following form:

∆CAPM βi,t = δi + δj,t + θ∆BMIi,t + ζXi,t + ϵi,t (15)

log (Yi,t+h)− log (Yi,t−1) = αh
i + αh

j,t + γh∆ ̂
CAPM βi,t + ξhXi,t + εi,t+h (16)

for firm i in industry j in calendar year t+h. The coefficients of interests, γh
, provide cumulative

local average treatment effects in % after h = 0, 1, . . . , 6 years.

We remove time-invariant heterogeneity across firms by including firm-fixed effects αi and

δi in both first and second stage. We additionally include (3-digit SIC) industry-by-year-by-total-

asset quintile fixed effects αj,t and δj,t to control for time-varying unobserved heterogeneity

across industries, such as differences in industry-level business cycles, which may be correlated

with firm outcomes. The use of industry-by-year-by-total-asset fixed effects forces the param-

eters of interest, γh
, to be identified solely from comparing similar sized firms within the same

industry. The vector Xi,t includes a set of time-varying firm-level control variables, such as log

of market equity (size) at the end of May and cumulative 1-year excess returns (momentum). We

additionally include up to three lags of the outcome and shock variables.

We cluster standard errors at the firm-level, which allows for a completely unrestricted speci-

fication of the residual covariance matrix in the time-series dimension. This effectively addresses

the issue of serial correlation in residuals arising in a local projection framework.

Identifying assumptions and threats to identification The instrumental variable exclu-

sion restriction in a local projection setting differs slightly from the usual one due to the dynamic

structure of the problem. Identification requires a contemporaneous and a lead-lag exclusion re-

striction. The instrument must be uncorrelated with past and future shocks, at least after includ-

ing control variables. The exclusion restriction requires that assignment of index membership is

exogenous and that changes in BMI only affect firm outcomes through changes in CAPM β̂.

However, concerns may arise that other factors, such as risk exposure, access to debt mar-

kets, or governance, could change alongside CAPM β̂s when BMI changes, potentially violating

the exclusion restriction. In Appendix D, we test whether changes in BMI correlate with changes

in firm risk, financial frictions, or governance, but find no evidence that they do. Importantly,

Column (1) of Appendix Table D14 shows that changes in BMI do not correlate with firm state-

ments about delaying investments. Failure of the exclusion restriction would introduce bias in

the estimated treatment effects. The size and sign of the bias depend on the size and sign of
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the failure and the strength of the instrument.
28

The literature on benchmark inclusion effects

generally finds positive but modest direct effects of inclusion on real outcomes (e.g., Kacperczyk,

Sundaresan, andWang, 2021). We thus, if anything, might expect an upward bias in our estimates.

To ensure that our estimates are well-identified, we follow three steps. First, we include up

to three lags of outcomes and shock in our regressions. Second, we saturate our LP-IV estimator

with high-dimensional fixed effects to remove as much time-varying unobserved heterogeneity

as possible. Third, we verify that including a set of known predictors of capital accumulation

(e.g., Tobin’s Q or cash flow) does not change our results in a robustness test.

Results Figure 6 shows several key results. First, the impulse responses across all outcome

variables have the expected signs: capital expenditure and physical and intangible capital stocks

decrease in response to an equity cost shock, while cash holdings increase. Eventually, firms

increase dividends and stock repurchases. Employment also decreases, suggesting that firms

reduce labor input in response to an increase in their perceived cost of capital.
29

Second, firm respond gradually to an increase in CAPM β̂, with effects starting from zero in

the treatment year and growing over time. The cumulative impact becomes statistically and eco-

nomically significant after about three years, aligning with industry practices of using a two to

five year rolling window to estimate CAPM β̂s. This gradual adjustment reflects how managers’

estimated cost of capital incorporates older data points. Third, benchmarking-induced asset price

distortions cause persistent effects on capital expenditure and capital stocks that remain signifi-

cant for at least six years after the shock.

Benchmarking-induced increases in CAPM β̂s lead to large and persistent declines in invest-

ment. We scale the shock to the average treatment effect for a BMI increase of at least 5 p.p.,

which corresponds to a change in the CAPM β̂ of 20%. We find that firms reduce their capital ex-

penditure by approximately 10.0% over six years in response to a shock to their CAPM β̂ of 20%.

The resulting decrease in physical capital stocks is 7.1% and in intangible capital stocks is 8.4%

after six years. Point estimates after six years imply a user cost of capital elasticity of physical

and intangible capital larger but close to the theoretical elasticity of 1 implied by Cobb-Douglas

production.

28
Consider the example given by Jordà et al. (2020): let y be the outcome,∆r the intervention, and z the instrument.

The IV setup consists of the first and second stage given by ∆r = zb + η and y = ∆̂rβ + zϕ + ν in which

E [∆rν] ̸= 0 but E [zν] ̸= 0. The exclusion restriction assumes that ϕ = 0. If ϕ ̸= 0, we have β̂IV
p→ β + ϕ/b.

The bias induced by failure of the exclusion restriction depends on both the size of the failure, ϕ, and the strength

of the instrument, b. Weaker instruments tend to worsen the bias (see also Conley, Hansen, and Rossi, 2012).

29
This could either be due to labor and capital being complements in firm’s production function or due to labormarket

frictions that prevent employment from freely adjusting in response to shocks. Borovička and Borovičková (2018)

argue that fluctuations in discount rates and labor market frictions markets play an important role for employment.
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Figure 6: LP-IV: Impulse Response of Outcome Variables to CAPM β̂ shock
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Notes: This figure shows LP-IV coefficient estimates for 100× cumulative log-changes of outcome variables. Inter-

vention is a ≈0.16 shock to CAPM βE
estimated with change in BMI as an instrumental variable. Dashed red lines

represent 90% significance bands for the null of zero treatment effect, computed by inverting the F-statistic of joint

significance around zero using Scheffé’s method (see Jordà, 2023).

Robustness checks We perform several robustness checks on the main results. First, we add

known predictors of investment, such as cash flow, Tobin’s Q, and the debt-to-equity ratio, to

the LP-IV regressions. Second, we incorporate different levels of fixed effects, replacing firm

size by industry by year fixed effects with sales by industry by year fixed effects. Appendix

Figure A5 shows coefficient estimates of these robustness checks alongside the original estimate.

The figure shows that adding firm-level controls does not change the estimates, supporting our

identification strategy. Altering the level of fixed effects only marginally affects point estimates,

with all changes well within one standard error of the original estimates.
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Investment Rates Appendix Figure A6 shows the impact of a 20% increase in CAPM β̂ on

investment rates.
30
The investment rate declines over time in response to the shock. Starting from

a near-zero, gradually becoming more negative, reaching the lowest point after four to five years.

The shock to the CAPM β̂ leads to a significant drop of -2.56 p.p. after four years. In standard

deviation units, investments drops by 0.19. This compares in terms of economic magnitudes to

Alfaro et al. (2024) who find that uncertainty shocks lead to a 0.18 sd drop in investment rates.

6.2 Misallocation due to Benchmarking Distortions

A substantial literature highlights how resource misallocation—characterized by dispersion in

firms’ marginal products of inputs—negatively affects aggregate productivity and output (e.g.,

Bau and Matray, 2023). David et al. (2022) show that, in a production economy with aggregate

risk, cross-sectional dispersion in the marginal product of capital (MPK) partly reflects variation

in firms’ CAPM βs. Thus, dispersion in MPK may represent not only resource misallocation but

also risk-adjusted capital allocation. Firms set their expected MPK equal to their cost of capital:

Et [MPKi,t+1] = rft + δ+βi,tλt, where δ denotes the depreciation rate. Consequently, the cross-

sectional variance in expected MPK at time t is given by σ2(Et [MPK]i,t+1) = σ2
βt
λ2
t , in which

σ2
βt

is the cross-sectional variance in CAPM βs. The degree to which risk contributes to MPK

dispersion thus depends positively on the cross-sectional variation in firms’ risk exposures and

the market price of risk.

We start by examining whether benchmarking generates excess dispersion in CAPM β̂s. Fig-

ure 7 shows that benchmarking-induced variation in CAPM β̂s is making up an increasing share

of within-industry variation in CAPM β̂s. In each month, we approximate the relationship be-

tween CAPM β̂s and BMI by fitting a flexible 5th order polynomial as well as industry-fixed

effects. We then plot the adjusted within-industry variation explained by BMI (within R
2
). Im-

portantly, we exclude variation explained by industry fixed effects. Before 2000, benchmarking

explains less than 5% of the average within-industry variation in CAPM β̂s. In 2018, bench-

marking explains approximately 20% of the average within-industry variation in CAPM β̂s. This

suggests that benchmarking-induced CAPM β̂ distortions have an impact on allocative efficiency

by creating within-industry dispersion in firm’s perceived cost of capital.

Next, we test whether the benchmarking-induced excess dispersion inwithin-industry CAPM

β̂s affects the dispersion in industries’ marginal products of capital (MPK). To address the endo-

geneity between MPK and CAPM βs, we implement a two-step procedure. In the first step, we

30
Defined as

CAPXt
1
2 (PPENTt−1+PPENTt)

(see e.g, Belo, Lin, and Bazdresch, 2014 and Alfaro, Bloom, and Lin, 2024).
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Figure 7: Percentage of Within-industry Variation Explained by Projecting CAPM β̂ onto BMI
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s of the following cross-sectional regressions:

CAPM β̂i = αj +
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k=1 φkBMI
k
i + ϵi in which αj is an industry fixed effect. We report the within-industry R

2

and exclude variation explained by industry fixed effects. Solid blue line is a two-sided moving average.

predict a firm’s CAPM β̂ using its benchmarking intensity. Since the level of benchmarking in-

tensity may not be exogenous, we instrument the intensity level in year twith changes in bench-

marking intensity (∆BMI) driven by Russell Index reconstitutions between May and June over

the past five years. This ensures that the variation in CAPM β̂s we utilize is solely attributable to

benchmarking. We then calculate the cross-sectional dispersion in CAPM β̂s, σ(CAPM β)t, the

dispersion specifically caused by benchmarking, σ(CAPM β
∧

)t, and the natural logarithm of the

marginal product of capital at the 4-digit NAICS industry level annually.
31

In the second step, we estimate how dispersion in CAPM βs affects dispersion in log (MPK)

at the industry-level using specifications of the form:

σ(mpk)j,t+1 = αt + αj + ˜σ(CAPM β)j,t + εj,t+1 (17)

in which industry j’s cross-sectional dispersion in CAPM βs is instrumented with the predicted

cross-sectional dispersion caused by benchmarking.

Table 5 shows that benchmarking-induced CAPM β̂ distortions affect dispersion in marginal

products of capital. Our two-step approach shows that higher within-industry dispersion caused

by benchmarking increases within-industry dispersion in MPKs. The results we document help

31
With Cobb-Douglas production, the log MPK is mpk = log (Sales)− log (PPENT ) (David et al., 2022).
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Table 5: Misallocation: Elasticity of Dispersion in MPKs with Respect to Dispersion in CAPM β̂s

Dependent variable: σ(mpk)t+1 σ(Et [mpk])t

RF IV RF IV

(1) (2) (3) (4) (5) (6) (7) (8)

σ(CAPM β
∧

)t 0.798
∗∗

0.492
∗∗

0.723
∗∗

0.505
∗∗

(0.231) (0.147) (0.222) (0.159)

σ(CAPM β)t 0.615
∗∗

0.547
∗∗

0.548
∗∗

0.551
∗∗

(0.195) (0.181) (0.179) (0.192)

Fixed Effects
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓

Adj R
2

0.02 0.67 0.03 0.66

FS F-stat. 129.3 90.2 137.9 73.2

Observations 3,469 3,468 3,461 3,460 3,466 3,465 3,460 3,459

Notes: This table reports coefficient estimates of regressions at the NAICS 4-digit industry-level of the form:

σ(mpk)j,t+1 = αt + αj + ˜σ(CAPM β)j,t + εj,t+1 in which industry j’s cross-sectional dispersion in CAPM

βs is instrumented with the predicted cross-sectional dispersion caused by benchmarking. mpk is the the natural

log of MPK, calculated as mpk = log (Sales)− log (PPENT ) and expected MPK assuming AR(1) productivity,

at = log (Sales)t − θ log (PPENT )t , as Et [mpkt+1] = ρat − (1− θ)kt+1 where ρ=0.93 and θ=0.65 (see David
et al., 2022). FS F-stat is Kleibergen-Paap F-stat of first stage. Standard errors clustered at industry- and year-level

in parentheses. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

explain the rise in within-industry productivity dispersion from 1997 to 2016 (Cunningham et al.,

2023).
32

Figure 7 and Table 5 suggest that benchmarking-induced excess dispersion in CAPM

β̂ prevents the equalization of marginal products across producers within industries. This is

important because distortions of within-industry capital allocation have first order implications

for aggregate and industry-level productivity growth (Hsieh and Klenow, 2009).

6.3 Effects of Increased Benchmarking at the Industry-level

We use the NBER-CES Manufacturing Industry Database to estimate the effect of increases in

industries’ average CAPM β̂ on capital accumulation over long horizons. Our results show that

higher CAPM β̂s led to 12.5% lower capital accumulation from 2000 to 2016 at the industry level.

Long-term effects of CAPM β̂ distortions on capital accumulation We use the NBER CES

Manufacturing Industry database to study the long-term effects of increasing CAPM β̂s due to

increased benchmarking on capital accumulation at the industry-level. We estimate the long-

32
In unreported results, we confirm that increases in σ(CAPM β

∧

)t are correlated with rising TFP dispersion in the

data of Cunningham et al. (2023).
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Table 6: Long-term Effects of Benchmarking on Capital Accumulation at the Industry-level

(1) (2) (3) (4) (5) (6)

Dependent variable: log (Real Capital Stock in 2016/Real Capital Stock in 2000)

∆ CAPM β̂A
(2000-2016) -0.414

+
-0.437

∗
-0.509

∗
-0.429

∗
-0.500

+
-0.490

+

(0.243) (0.214) (0.218) (0.176) (0.276) (0.232)

Real Capital Stock/Value Added (2000) 0.0705 -0.108 -0.0986

(0.095) (0.068) (0.069)

log (Employment) (2000) 0.0290 0.0743 0.0717
+

(0.037) (0.044) (0.039)

log (TFP) (2000) 0.427
+

-0.203 -0.211

(0.221) (0.156) (0.154)

Pretrend Real Capital Stock (1990-1999) -0.0771 -0.185

(0.110) (0.122)

Pretrend Employment (1990-1999) 0.296
+

0.276
+

(0.147) (0.143)

Pretrend Wages (1990-1999) -0.0543 0.0938

(0.446) (0.588)

Constant 0.151
+

-0.0542

(0.082) (0.254)

Fixed Effects
Subsector FE ✓ ✓ ✓ ✓

FS F-stat. 7.54 12.93 22.31 19.54 21.42 21.85

Observations 111 111 107 107 107 107

Notes: This table reports coefficient estimates of regressions at the NAICS 5-digit industry-level of the form:

∆ log (Real Capital Stock)i = αj + γ∆CAPM β̂A
i + ζXi + εi in which changes in unlevered CAPM β̂A

are in-

strumented with changes in BMI from 2000 to 2016. BMI and CAPM β̂ are market-value weighted averages at the

NAICS 5-digit industry level of Compustat firms. Pretrends measure log changes in variables from 1990 to 1999.

Regressions are weighted by industry value added in 2000. Sub-sector fixed effects are at the NAICS 3-digit level. FS

F-stat is Kleibergen-Paap F-stat of first stage. All variables are winsorized at the 2.5% and 97.5% level. Standard errors

clustered at subsector-level in parentheses. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

term effects of increasing CAPM β̂s due to higher benchmarking at the NAICS-5 digit industry-

level. We weigh each industry observation by its value-added in the year 2000 to obtain results

comparable to the aggregate economy.

We estimate a series of IV regressions in long-differences from 2000 to 2016 of the form:

∆16
00CAPM β̂

A

i = δj + θ∆16
00BMIi + ζX ‘00

i + ϵi (18)

log
(
Real Capital Stock

‘16
i /Real Capital Stock‘00i

)
= αj + γ∆16

00
̂

CAPM β̂
A

i + ζX ‘00
i + εi (19)
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in which αj are NAICS 3-digit subsector fixed effects. The vector of control variables X ‘00
i in-

cludes industry-level characteristics in 2000, such as the log of employment and TFP. The controls

account for initial differences in industry characteristics that may affect capital accumulation. We

calculate the change in CAPM β̂A
for industry i from 2000 to 2016 as the difference between the

market equity-weighted average CAPM β̂A
of firms in that industry in 2016 and 2000. Similarly,

we calculate the change in industry BMI from 2000 to 2016 as the difference between the market

equity-weighted average BMI of firms in the same industry in 2016 and 2000.

A potential concern with our industry-level analysis is that the effects of increasing bench-

marking on capital accumulation may be confounded by other secular changes in the economy

or that industries were already on different growth paths in 2000. We address these concern by

including controls for pre-trends in capital accumulation, employment, and wages from 1990 to

1999. Additionally, we include NAICS 3-digit sub-sector
33
fixed effects in the regressions. Using

sub-sector fixed effects, we identify the effects of changes in CAPM β̂ on capital accumulation

using variation across industries within the same sub-sectors.

Results Table 6 reports coefficient estimates of Eq. (19). Several things are worth noting. First,

across all specifications, we find that increases in CAPM β̂s have a statistically significant negative

effect on long-term capital accumulation at the industry-level. Second, the estimated coefficients

are economically meaningful. The coefficient of Column (4) implies that the 0.29 increase in

average CAPM asset β̂A
for Russell 2000 companies (see Figure 3) is associated with a 12.5%

(≈0.29×0.43×100%) lower aggregate capital stock over the 17-year period. These magnitudes

imply a user cost of capital elasticity close to the value of 1 implied by Cobb-Douglas production.

Third, the results are robust to the inclusion of industry-level controls and sub-sector fixed effects.

Fourth, changes in BMI are strong instruments for changes in CAPM β̂ even at the industry-level,

with first-stage F-stats averaging 17.6 across columns.

7 Effects of Increased Benchmarking in Aggregate

We argue that increased benchmarking has contributed to the missing investment puzzle docu-

mented by (Gutiérrez and Philippon, 2017). Our difference-in-differences results show that ex-

ogenous BMI increases due to benchmark inclusion raise the CAPM β̂s of firms. Extending this

to the broader cross-section of firms, we estimate that the equal-weighted average of CAPM β̂s

33
For example, the NAICS 3-digit sub-sector “311 - Food Manufacturing” contains 12 NAICS 5-digit industries.
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Figure 8: Equal-weighted Average Cross-Sectional CAPM β̂E
and BMI Over the past 25 years
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increased by 0.41 over the past 25 years after being relatively stable for 30 years.
34

We attribute

almost 90% of this increase to the large increase in benchmarking intensity since 1998. We con-

struct a counterfactual WACCwhich shows that the increase in benchmarking raised the average

firm’sWACC by 145 bps, on average. The counterfactual shows that the increase in the perceived

equity risk largely offset the decline in risk-free rates over the past 25 years. The wedge is large

enough to explain approximately 57% of the missing investment puzzle.
35

Increase in equal-weighted average CAPM β̂ over the past 25 years Figure 8 shows the

evolution of average CAPM β̂ and average BMI from 1998 to 2018. A casual inspection of the

graphs suggests that both time-series are related. The average BMI increased from 4% in 1998 to

16% in 2018, while the average CAPM β̂ increased from 0.63 to 1.09.

We estimate how an increase in the average cross-sectional BMI affects the average CAPM β̂.

To address the potential of a “spurious regression”, we follow the advice of Hansen (p. 588, 2023)

and include a lag of the outcome variable. We additionally report results of Dynamic OLS (DOLS)

(Stock and Watson, 1993) specifications. Appendix Table A6 reports results of these time-series

regressions. The results imply that a 1 p.p. increase in average BMI increases the average CAPM

34
Appendix Figure A7 plots the time series of equal-weighted average CAPM β̂ from 1975 to 2020. We start in 1975

to focus on the period after NASDAQ’s addition to the CRSP sample. The equal-weighted average CAPM β̂ had a

mean of 0.67 from 1975 to 2000 but increased in the 2000s, settling at new mean of around 1.02 post 2010.

35
Farhi and Gourio (2018) estimate a macro-finance model and similarly find that higher perceived risk starting in the

late 1990s explains weak investment. However, their model is silent on the mechanism which increases perceived

risk. We offer a novel explanation for increases in perceived risk: benchmarking-induced distortions in CAPM β̂s.
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Figure 9: Actual and Counterfactual Estimates of Cost of Equity Capital and WACC
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Notes: This figure shows monthly estimates of the cross-sectional averages of cost of equity capital and WACC. Red

solid line shows cost of capital estimates using the actual measured CAPM β̂t. Blue dashed lines shows counterfactual

in which CAPM β̂t is adjusted for BMI increases (see Eq. 22).

β̂ by 0.03 in the long-run. The rise in the average stocks’s benchmarking intensity from 1998 to

2018 explains approximately 88% (=14p.p.×0.029/(1.09-0.63)) of the increase in average CAPM.
36

Counterfactual weighted average cost of capital over the past 25 years We next doc-

ument that the benchmarking-induced CAPM β̂ distortions are large enough to affect firm’s

weighted average cost of capital (WACC) over the past 25 years. We calculate a counterfactual

WACC that adjusts the CAPM β̂ for the BMI increase and holds all other factors constant. The

wedge between the actual and counterfactualWACC is on average 145 bps and is, by construction,

due to the increase in CAPM β̂.

We calculate the average cross-sectional WACC in the Compustat sample as follows:

WACCt = ωt × rEt + (1− ωt)× rDt × (1− τ t) (20)

in which ωt = Et/(Et+Dt) represents the fraction of firm value financed by equity (on average

0.76 over the sample) and τ t is the average cross-sectional tax rate (on average 0.26). The expected

36
We cannot statistically reject that 100% of the increase in average CAPM β̂ is driven by the increase in BMI.
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return on equity is given by the CAPM

rEt = rft + β̂t ×
(
Et

[
rMkt

]
− rft

)
, (21)

in which we set the real risk-free rate, rft , to the constant maturity yield on 10-year Treasury

Inflation-Protected Securities (TIPS). We assume a constant 6% ERP
37
and use the yield on the

ICE-BofA High-Yield Bond Index to estimate the average expected return on debt, rDt .
38

We calculate a counterfactual WACC motivated by our findings that increases in BMI cause

CAPM β̂s to rise and that at least 80% of the aggregate increase in CAPM β̂s was driven by

increases in the BMI (see Figure 8). We adjust the average CAPM β̂t in Eq. (21) as:

β̂
CF 2

t = β̂1998/1 +
1

5
×

t∑
i=1998/2

(β̂i − β̂i−1) ∀ t ≥ 1998/1. (22)

This adjustment guarantees that the counterfactual CAPM β̂
CF 2

t is perfectly correlated with the

actual CAPM β̂t, but the increase in CAPM β̂ is exactly 20% at the end of the sample.

Figure 9 shows estimates of the actual and counterfactual cost of equity capital and WACC

from 1998 to 2018. The actual cost of equity capital remained relatively stable over the time-

period. The cost of equity for the average firm in 2018 is approximately 60 bps lower than in

1998. In the counterfactual scenarios, however, the cost of equity declines substantially. The

secular decline in the risk-free rate over the past 25 years drives the decline in the cost of equity

(Bauer and Rudebusch, 2020). The counterfactual uncovers that the decline in the risk-free rate

was largely offset by an increase in equity risk premium for the average firm. The actual WACC

decreased slightly over the sample period, while the counterfactuals decreased substantially. The

actual WACC decreased by approximately 60 bps over the sample period. The counterfactual

WACC declines by over 160 bps from 1998 to 2018.

Missing investment in the aggregate We assess whether the wedge between actual and

counterfactual WACC, is large enough to account for the missing investment puzzle. We adopt

the methods of Gutiérrez and Philippon (2017) and Gormsen and Huber (2023). Using data from

1990–2002, we estimate the relationship between aggregate investment and Tobin’s Q, then pre-

dict post-2002 investment under the assumption that this relationship remained unchanged. The

37
Results using a time-varying ERP show that the cost of equity and WACC have increase over the past 25 years.

The weighted average cost of capital would have declined had the CAPM β̂ not increased (Appendix Figure A9).

38
The ICE-BofA yield closely tracks other common proxies for the average cost of debt. For instance, Gormsen and

Huber (2024) use interest expenses over total debt in Compustat. Appendix Figure A8 shows both time-series.
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Figure 10: Adjusted Tobin’s Q and the Cumulative Investment Shortfall
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Notes: This figure shows the cumulative investment shortfall as a percentage of the capital stock, estimated separately

using Tobin’s Q and Adjusted Tobin’s Q. Following Gormsen and Huber (2023), Tobin’s Q is calculated using market

value data from the Flow of Funds and tangible plus intangible capital data from the BEA. Adjusted Q accounts for

the wedge between financial market discount rates and firm managers’ perceived cost of capital (see Eq. (23)). The

relationship between investment and Q is estimated using 1990–2002 data for each Q type. For post-2002 years, cu-

mulative residuals are computed as the difference between observed investment and predictions based on 1990–2002

estimates. Confidence intervals (95%) are derived using Newey-West standard errors with 5 lags.

“missing investment” is the cumulative shortfall since 2002, reflecting the divergence between To-

bin’s Q and observed investment. Gormsen and Huber (2023) show that when a firm’s perceived

discount rate exceeds the market’s discount rate, it undervalues profits generated by capital rel-

ative to the market. Following their approach, we adjust Tobin’s Q to account for the average

discrepancy between the market’s discount rate and the firm’s perceived cost of capital, yielding

an adjusted Tobin’s Q:

Adjusted Tobin’s Q = Tobin’s Q× 1

1 + ∆WACC× Dur

(23)

in which∆WACC is the wedge between actual and counterfactualWACC documented in Figure 9

and Dur is cash flow duration. The impact of this adjustment depends on both the size of the

discount rate wedge and the duration of cash flows. A higher duration amplifies the effect of the

discount rate on asset value. The influence of wedges thus grows with the duration of cash flows.

We set the duration to 28 years which is the midpoint of the stock market duration estimates of

Gormsen and Huber (2023) and Greenwald, Leombroni, Lustig, and Van Nieuwerburgh (2021).
39

39
We obtain quantitatively and qualitatively similar results using a time-varying measures of cash flow duration.
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Figure 10 shows that the WACC wedge we document can explain 57% of the missing in-

vestment puzzle. Without adjustment, the aggregate investment shortfall implied by Tobin’s Q

is approximately 25% of the capital stock by 2019. After adjustment for the WACC wedge, the

shortfall is reduced to approximately 11% of the capital stock. The wedge between actual and

counterfactual WACC is thus large enough to account for more than half of the missing invest-

ment puzzle. The remaining gap is likely related to other macro developments, such as rising

market power (Barkai, 2020, Crouzet and Eberly, 2023) and mismeasurement of intangible capital

(Peters and Taylor, 2017).

A potential concern with the aggregate results is our reliance on the equal-weighted average

CAPM β̂ to calculate changes in the perceived WACC. One might argue that the market value-

weighted average CAPM β̂ is the one relevant for the aggregate economy but, by definition,

must always equals 1. However, its relevance for aggregate investment is less clear than one

might think. Lee, Shin, and Stulz (2021) document that high market valuations for large firms

are a proxy for rents rather than for investment opportunities. Jiang, Vayanos, and Zheng (2024)

find that flows into passive funds disproportionately raise the stock prices of the stock market’s

largest firms, and especially those large firms which the market already overvalues. Further, the

Roll (1977) critique applies: the stock market’s value-weighted CAPM β̂ is only meaningful if

stock market values perfectly proxy aggregate investment opportunities.

We nevertheless explore other weighting schemes to calculate the weighted average CAPM β̂

of Compustat firms. Appendix Table A7 compares the cross-sectional weighted average CAPM β̂

of Compustat firms across two periods: 1975–2003 and 2004–2017, using seven different weight-

ing schemes—market value, equal weight, PPENT, capital expenditures, total assets, sales, and

value added. For all schemes except market value (by definition), the average CAPM β̂ increased

after 2004, with changes ranging from 0.13 (value added) to 0.27 (equal weight). The increases

are statistically significant at the 0.1% level for all schemes except market value.

8 Conclusion

This paper studies the causal effects of benchmarking-induced asset price distortions on corpo-

rate investment. We find that increases in benchmarking intensity cause CAPM β̂ to rise. Over

the past 25 years, increased benchmarking has caused the equal-weighted average CAPM β̂ to

rise by 0.41. In other words, benchmarking caused the average firm’s perceived cost of equity to

increase by more than 200 bps, largely offsetting the decline in the risk-free rate over the same

period. Firms reduce investment in response to benchmarking-induced increases in CAPM β̂.
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We argue that this behavior results from managers’ reliance on textbook guidance to estimate

the cost of capital using the CAPM, without internalizing the asset price distortions caused by

benchmarking. Consistent with this mechanism, corporate managers, stock analysts, and regula-

tors report higher perceived costs of equity capital after CAPM β̂s increases due to benchmarking.

An influential literature shows that U.S. investment has been low relative to valuations over

the past two decades. Our findings suggest that increases in average CAPM β̂ can explain up to

57% of the cumulative investment shortfall since the early 2000s. The benchmarking of asset man-

agers and the rise in passive investing therefore have significant and economically meaningful

implications for aggregate investment. Our study highlights the important role of benchmarking

in shaping asset prices and corporate investment decisions. The findings underscore the need for

managers, policy makers, and investors to consider the unintended consequences of the growth

in benchmark-linked investing and its impact on the real economy.
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A Appendix

A.1 Appendix Figures

Figure A1: Discontinuities in Average Benchmarking Intensity, CAPM β̂s, Perceived Cost of

Capital, and Hurdle Rates Around Russell 1000/2000 Cutoffs from 2007 to 2018
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Notes: This figure shows binned scatter plots of (a) benchmarking intensity (Pavlova and Sikorskaya, 2023), (b) CAPM

equity β̂s, (c) firm managers’ perceived cost of capital (Gormsen and Huber, 2024), and (d) firm managers’ hurdle

rates (Gormsen and Huber, 2023) against May market capitalization ranks. We separately plot the conditional means

for Russell 1000 (blue squares) and Russell 2000 (red dots) stocks. Conditional means are identified absorbing year-

month and stock fixed effects. Sample period from 2007 to 2018 (after Russell introduced its banding-policy).
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Figure A2: Rolling-Window CAPM β̂ Estimates at Different Frequencies
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Notes: This figure shows binned scatter plots of rolling-window CAPM β̂s against May market capitalization ranks

for different estimation frequencies. Daily rolling window estimates use 252 trading days, weekly rolling window

estimates use 156 weeks of data, and monthly rolling window estimates use 36 months of data. Shaded areas are 90%

confidence bands based on standard errors clustered at the stock and year-month level.
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Figure A3: Difference-in-differences Event Study for Different Treatment Intensities
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Figure A4: Event Study Placebo
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Notes: This figure shows difference-in-differences event study coefficients of Eq. (8). Treatment group: ∆BMI ∈
(0 p.p., 1 p.p.]. Control group: ∆BMI ∈ [−1 p.p., 0 p.p.]
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Figure A5: LP-IV Robustness to various Alternative Specifications
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Figure A6: Impact of changes in CAPM β̂ on investment rate
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Notes: This figure shows estimates for γh
of Investment Ratei,t+h = αi + αj,t + γh

ĈAPM βi,t + X ′
i,tξ + εi,t+h,

estimated using changes in BMI as an IV for changes in CAPM β̂. Estimates are scaled to a 0.16 change in CAPM β̂.
Investment rate is defined as

CAPXt
1
2 (PPENTt−1+PPENTt)

(see e.g, Alfaro et al., 2024 or Belo et al., 2014). Median and standard

deviation of investment rate are 19.9% and 13.5%, respectively.
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Figure A7: Time Series of Equal-weighted Average CAPM β̂ since 1975
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Notes: This figure shows the monthly cross-sectional equal-weighted average CAPM β̂ of Welch (2022b) since 1975.

We focus on the period after the NASDAQ’s addition to the CRSP sample. Time-series are smoothed using a two-

sided moving-average filter with 24 month window on either side.

Figure A8: Average Cost of Debt Capital and Real Risk-free Rate over the past 25 years
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Notes: This figure shows monthly estimates of the average firm’s cost of debt. The solid blue line proxies for cost

of debt using interest expenses over total debt in Compustat. The dashed red line proxies for cost of debt using the

yield on the ICE-BofA HY index. Dashed blued line proxies for risk-free rate using the yield on 10-year TIPS from

2004 to 2018 and before 2004 nominal Treasurys adjusted for 10-year inflation expectations from the SPF.
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FigureA9: Average Cost of Equity Capital andWACCover the past 25 years (Using Time-varying

Equity Risk Premium Implied by S&P 500 Dividend Yield)
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Notes: This figure shows monthly estimates of the cross-sectional averages of cost of equity capital andWACC using

a time-varying ERP. We estimate Et

[
rMkt

]
− rft by calculating the time-varying expected return on the market

(proxied by the S&P 500) using Gordon’s growth model: Et

[
rMkt

]
= Dt+1/Pt+g. We assume the average expected

real dividend growth, g, to be constant at 4.88%. We use the average expected dividend growth rate of the S&P 500

(7.31%) from 1994 to 2011 (Golez, 2014) and subtract expected annual inflation over the next 10 years (SPF). Red solid

line shows cost of capital estimates using the actual CAPM βt. Blue and orange dashed lines show counterfactuals

in which CAPM βt is adjusted for BMI increase (see Eq. 22) or set constant at its pre-2000 average, respectively.
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A.2 Appendix Tables

Table A1: Summary Statistics of Matched BMI-CAPM Sample

Mean SD Min P5 P10 Median P90 P95 Max N

CAPM β (Welch, 2022) 0.88 0.48 -0.71 0.14 0.25 0.88 1.51 1.69 2.67 1,231,865

∆ CAPM β 0.02 0.27 -1.67 -0.41 -0.29 0.02 0.34 0.46 1.88 59,510

BMI in May 0.15 0.09 0.00 0.00 0.00 0.17 0.26 0.28 0.34 61,099

BMI in June 0.16 0.09 0.00 0.00 0.00 0.17 0.26 0.27 0.36 61,099

∆ BMI 0.00 0.04 -0.41 -0.04 -0.02 0.00 0.03 0.05 0.24 61,098

Market Cap. (in $m) 3,737 15,447 0.00 11.00 21.00 309.00 6,305 15,382 350,232 1,231,865

Shares Out. (in 1000s) 90.85 257.69 0.00 2.00 4.00 26.00 174.00 347.00 3,914 1,231,865

Trading Vol. (in 100,000s) 16,842 50,099 0.00 29.00 73.00 2,630 38,506 75,318 1,085,943 1,231,865

Notes: Monthly sample from 1998 to 2019. ∆CAPM β̂ is the difference between the average CAPM β̂ in the first and last quarter of a year.

Variables are winsorized at the 0.5% and 99.5% level.

Table A2: Effect of Change in Benchmarking Intensity on CAPM β̂

Treatment Group: ∆ BMI>5p.p.

Sample: Market Equity ≥ P10 NYSE Market Equity ≥ P20 NYSE

(1) (2) (3) (4) (5) (6) (7) (8)

Treated × Post 0.111
∗∗∗

0.117
∗∗∗

0.111
∗∗∗

0.111
∗∗∗

0.102
∗∗∗

0.109
∗∗∗

0.102
∗∗∗

0.103
∗∗∗

(0.013) (0.012) (0.012) (0.012) (0.014) (0.012) (0.013) (0.013)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fixed Effects

Firm × Cohort ✓ ✓ ✓ ✓ ✓ ✓
Time × Cohort ✓ ✓
Size Decile × Time × Cohort ✓ ✓
Volume Decile × Time × Cohort ✓ ✓
Shrs. Out. Decile × Time × Cohort ✓ ✓

Observations 291,822 291,754 291,688 291,617 249,916 249,840 249,745 249,703

Notes: This table reports coefficient estimates of Eq (8). Treated×Post is the average of the post-treatment coefficients after 5 months (to account

for the expanding-window estimation of CAPM β̂). Sample from 2000-01 to 2019-06. Standard errors in parentheses are double-clustered at firm

and year-month level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A3: Robustness to Alternative CAPM β̂ Estimators

(1) (2) (3) (4) (5) (6) (7)

Panel A: CAPM β estimates using expanding windows of daily data with exponentially decaying weights of 3-months half life

∆ CAPM βOLS
EW ∆ CAPM βWEL

EW ∆ CAPM βDIM
EW ∆ CAPM βBLU

EW ∆ CAPM βTOP
EW ∆ ρ(ri, rm)EW ∆ σi

EW

∆ BMI (in p.p.) 0.0183
∗∗∗

0.0154
∗∗∗

0.0135
∗∗∗

0.0122
∗∗∗

0.0171
∗∗∗

0.00646
∗∗∗

-0.0000668
∗

(0.001) (0.001) (0.002) (0.001) (0.001) (0.000) (0.000)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adj. R

2
0.15 0.16 0.11 0.15 0.26 0.41 0.59

Observations 28,514 28,514 28,514 28,514 28,514 28,514 28,514

Panel B: CAPM β estimates using daily data with a 2-year rolling window (with equal weights)

∆ CAPM βOLS
RW ∆ CAPM βWEL

RW ∆ CAPM βDIM
RW ∆ CAPM βBLU

RW ∆ CAPM βTOP
RW ∆ ρ(ri, rm)RW ∆ σi

RW

∆ BMI (in p.p.) 0.00630
∗∗∗

0.00547
∗∗∗

0.00576
∗∗∗

0.00420
∗∗∗

0.00691
∗∗∗

0.00271
∗∗∗

-0.0000516
∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.000)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adj. R

2
0.21 0.22 0.17 0.21 0.31 0.43 0.58

Observations 28,514 28,514 28,514 28,514 28,514 28,514 28,514

Notes: This table reports coefficient estimates of specifications of the form: ∆βi,t = αi + αt + γ∆BMIi,t + εi,t. ∆βi,t is between 1st and 4th quarter of each year. βWEL

is estimator of Welch (2022b), βDIM
is estimator of Dimson (1979), βBLU

is estimator of Blume (1975) (also known as Bloomberg β̂), βTOP
is β̂ with respect to ten largest

stocks by market capitalization, EW stands for expanding window, RW for rolling window. Changes in BMI and CAPM β̂s are winsorized at the 2% and 98% level. Estimation

sample is restricted to stocks within 300 ranks around Russell index cutoffs. Standard errors in parentheses are clustered at firm-level. + p<0.10, * p<0.05, ** p<0.01, ***

p<0.001.

Table A4: Lag-selection based on Bayesian/Schwartz Information Criterion

Maximum lag length L=0 L=1 L=2 L=3 L=4 L=5 L=6

Bayesian Information Criterion (OLS) 433 372 370 293 174 144 152

Bayesian Information Criterion (IV) 1,938 729 489 432 388 553 605

Observations 14,420 14,420 14,420 14,420 14,420 14,420 14,420

Notes: This table reports BIC for regression specifications of the form: ∆Perceived Cost of Capitali,t = αi + αt +

γ ∆CAPM βi,t + νi,t for OLS and IV regression specification in which changes in CAPM β̂ are instrumented by

changes in BMI.

Table A5: Effect of ∆ CAPM β̂ on Managers’ Perceived Cost of Capital (unrestricted DL model)

Dependent variable: ∆ Perceived Cost of Capital (in p.p.)

RF OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ BMI (in p.p.) 0.016
∗∗∗

0.017
∗∗∗

0.017
∗∗∗

(0.004) (0.004) (0.004)

∆ CAPM βA
1.202

∗∗∗
1.183

∗∗∗
1.135

∗∗∗
3.153

∗∗∗
3.694

∗∗∗
3.148

∗∗∗

(0.057) (0.059) (0.075) (0.825) (0.920) (0.769)

Fixed Effects
Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time ✓ ✓ ✓
Size Quartile × Time ✓ ✓ ✓
Industry × Time ✓ ✓ ✓

Observations 19,501 19,501 18,940 19,501 19,501 18,940 19,501 19,501 18,940

Notes: This table reports λ =
∑4

h=0 γ̂h for specifications of the form: ∆Perc. Cost of Capitali,t = αi+αj,t+
∑4

h=0 γh∆CAPM βi,t−h+εi,t
for reduced form, OLS, and IV regression in which the instrument is∆BMI for stock i in year t. IV estimated via LIML. Standard errors in

parentheses are clustered at firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table A6: Effects of Benchmarking Intensity on Equal-Weighted Average CAPM β̂E

(1) (2) (3) (4) (5) (6)

OLS ADL(1) DOLS(3) DOLS(4) DOLS(5) DOLS(7)

BMI (in %) 0.038 0.030
∗

0.032
∗∗∗

0.031
∗∗∗

0.031
∗∗∗

0.029
∗∗∗

(0.015) (0.005) (0.005) (0.005) (0.005)

Engle-Granger’s Augmented Dickey-Fuller test

(H0: no cointegration)

-13.77
∗∗∗

-3.93
∗∗∗

-3.66
∗∗

-3.75
∗∗

-3.30
∗

Adj. R
2

0.99 0.71 0.72 0.74 0.78

Observations 225 225 225 225 225 225

Notes: Newey-West standard error in parentheses with L=21 lags. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Table A7: Weighted Average CAPM β̂ of Compustat Firms from 1975 to 2017

(1) (2) (3) (4) (5) (6) (7)

Weighted CAPM β Estimates

weighted by: Market Cap. Equal PPENT Cap. Ex. Total Assets Sales Value Add.

1{Year > 2003} 0.003 0.273
∗∗∗

0.196
∗∗∗

0.152
∗∗∗

0.216
∗∗∗

0.163
∗∗∗

0.130
∗∗∗

(0.012) (0.021) (0.030) (0.027) (0.024) (0.028) (0.025)

Constant 1.001
∗∗∗

0.735
∗∗∗

0.854
∗∗∗

0.907
∗∗∗

0.849
∗∗∗

0.910
∗∗∗

0.927
∗∗∗

(0.010) (0.012) (0.032) (0.028) (0.020) (0.029) (0.025)

Observations 43 43 43 43 43 43 43

Notes: This table reports coefficient estimates of yearly regressions of the form: Weighted CAPM βt = α0 +
1{Year > 2003} + εt from 1975 to 2017 in which Weighted CAPM βt =

∑
i ωi × CAPM βi,t is the cross-sectional

weighted average of Compustat firm’s CAPM β̂. Firm-level CAPM β̂s are estimates from Welch (2022b). Newey-West

standard errors with 8 = ⌊1.3
√
43⌋ lags in parenthesis. . + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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B Flows Into Passive Mutual Fund and CAPM β̂s

This appendix documents a strong correlation between passive mutual fund flows and cross-

sectional increases in CAPM β̂s using panel regressions. We also present simulation evidence

showing that a two-factor model—with a passive flow factor scaled by BMI exposure—can repli-

cate the observed rise in CAPM β̂s.

Figure B10: Cumulative Net Flows into Passive and Active Mutual Funds and ETFs
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Notes: This figure show cumulative monthly net flows into active and passive mutual funds and ETFs from 1998 to

2024 deflated by the Consumer Price Index. Source: Morningstar Direct.

In 2024, total net assets in U.S. passive mutual funds and ETFs surpassed those in active

funds for the first time (Morningstar Direct, 2025). Figure B10 illustrates the rapid growth of

passive investing over the past 25 years, with cumulative net flows into passive funds exceeding

those into active funds by more than $10 trillion since 1998. According to Investment Company

Institute (2022), index funds held 16% of the U.S. stock market in 2021. However, Chinco and

Sammon (2024) estimate that total passive ownership is roughly twice this figure, accounting

for institutions managing index portfolios internally and active managers engaging in quasi-

indexing.

Mutual Fund Flows We obtain monthly total net assets and net flows of active and passive

mutual funds and ETFs from Morningstar Direct. We exclude feeder funds and funds of funds.

The net flows into mutual funds in month t, F
(ι)
t , do not include any valuation effects from price

changes, distribution, or reinvested dividends (see Morningstar Direct, 2024). Rather, the flows

present the net amount of money that investors put into or withdraw from mutual funds.
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Figure B11: Impact of Net Flows into Passive and Active Mutual Funds and ETFs on CAPM β̂
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(a) 1998 – 2010
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(b) 2011 – 2020

Notes: This figure shows estimates of γA
j and γP

j from the monthly panel regression:

CAPM β̂i,t = αi + ρ CAPM β̂i,t−1 +
∑

j γ
A
j 1{i ∈ Bin j} × FA

t /AA
t−1 +

∑
j γ

P
j 1{i ∈ Bin j} × FP

t /AP
t−1 + εi,t.

Estimates are scaled to a 2 standard deviation net inflow (≈ 1% ofAt−1). 90% confidence intervals based on standard

errors clustered at the stock and year-month level. CAPM β̂ estimated using a rolling window of 52 weeks.

B.1 Effect of Passive Mutual Fund Flows on CAPM β̂s

We test whether passive or active flows are correlated with the observed increase in CAPM β̂.

We estimate the following panel regression at the monthly frequency (using end of month β̂s):

CAPM β̂i,t =αi + ρ CAPM β̂i,t−1

+
∑
j

γA
j 1{i ∈ Bin j} × FA

t /A
A
t−1 +

∑
j

γP
j 1{i ∈ Bin j} × F P

i,t/A
P
t−1 + εi,t (24)

in whichFA
t andF P

i,t are net flows into active and passive funds, respectively. We set 1{i ∈ Bin j}
to 1 if stock i is in bin j of the market capitalization rank and 0 otherwise.

Figure B11 plots the estimates γA
j and γP

j from Eq. (24). It shows howCAPM β̂s across the size

distribution change in response to a 2 standard deviation net flow into active and passive funds.

Panel (a) shows the period from 1998 to 2010. The increase in CAPM β̂ in response to net flows

into both active and passive funds is minuscule and statistically insignificant. Panel (b) shows the

period from 2010 to 2018. The increase in CAPM β̂ in response to net flows into passive funds is

large and statistically significant for stocks beyond a market capitalization rank of 1000. This is

consistent with the fact that a larger fraction of the Russell 2000 is owned by passive funds than

the Russell 1000 (Pavlova and Sikorskaya, 2023). A 2 standard deviation net inflow into passive

funds increases the CAPM β̂ of the small-caps stocks by 0.06 to 0.10. The effects of flows into
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Table B8: Benchmarking Intensity and Net Flows into Active and Passive Mutual Funds

(1) (2) (3) (4) (5)

CAPM β̂ CAPM β̂ CAPM β̂ CAPM β̂ CAPM β̂

BMIi,t−1 (as fraction of ME) 1.119
∗∗∗

1.980
∗∗∗

0.064 1.971
∗∗∗

0.135

(0.237) (0.309) (0.198) (0.309) (0.202)

BMIi,t−1 × Ft/At−1 (Pooled) 0.160
∗∗

0.034 0.201
∗∗∗

(0.062) (0.063) (0.073)

BMIi,t−1 × Ft/At−1 (Active Funds) 0.034 0.095

(0.066) (0.080)

BMIi,t−1 × Ft/At−1 (Passive Funds) 0.024 0.245
∗∗∗

(0.063) (0.076)

Sample 1998 – 2018 1998 – 2010 2011 – 2018 1998 – 2010 2011 – 2018

Stock Fixed Effects ✓ ✓ ✓ ✓ ✓
Year-Month Fixed Effects ✓ ✓ ✓ ✓ ✓
Adj. R

2
0.47 0.52 0.54 0.52 0.54

Observations 699,752 409,095 290,638 409,095 290,638

Notes: This table reports coefficients from the panel regression: CAPM β̂i,t = αi+αt+BMIi,t−1+BMIi,t−1×Ft/At−1+εi,t in
which Ft are net flows and Ai,t total net assets of mutual funds and EFTs from Morningstar Direct. Ft/At−1 is standardized to

have zero mean and unit variance. Observations are weighted by market capitalization. Standard errors clustered at the stock

and year-month level in parenthesis. * p<0.10, ** p<0.05, *** p<0.01

active mutual funds on CAPM β̂s close to zero and statistically insignificant.

Prima facie, our results suggest that the relationship between passive flows and CAPM β̂s

may have evolved over time. While official data show large passive fund flows only after 2010,

Chinco and Sammon (2024) document substantial flows into passive strategies before 2010 that

do not appear in official passive fund data. This suggests that passive flow’s distortions of CAPM

β̂ may have been present earlier but was not captured through traditional fund classifications.

Table B8 provides further insight. Before 2010, the effects on CAPM β̂s appear to have been

intermediated primarily through BMI, whereas after 2010, the impact operates through direct

interactions with observed net flows – specifically, the interaction between passive flows and

benchmarking intensity. We interpret this result as suggesting that BMI is a good proxy for

exposure to passive flows pre-2010.

B.2 Simulated CAPM β̂s in a Two-Factor Model

We use simulations to show that the emergence of a second (flow) factor explains the cross-

sectional evolution of CAPM β̂s between 1998 and 2018. We propose a parsimonious two-factor

model in which a stock’s CAPM β̂ depends on its exposure to a fundamental factor and a flow
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factor. The fundamental factor is the first principal component of key macro-financial variables,

with factor loadings fixed at the distribution of CAPM β̂s observed in May 1990—when passive

index investingwas still nascent. The flow factor captures net flows into passivemutual funds and

ETFs, with exposures proxied by stocks’ benchmarking intensity. We discipline the simulation

using the time-series of market weights, conditional (co)variances, and flow-factor exposures.

The simulations yield three key findings: (i) A flow factor with loadings proportional to

benchmarking intensity successfully captures both the cross-sectional distribution and the tem-

poral evolution of CAPM β̂s from 1998 to 2018. (ii) Calibrating the flow factor using passive net

flows replicates the conditional covariance structure which is able to match the observed time

series of CAPM β̂s. (iii) In contrast, active fund flows fail to match the observed conditional

moments of CAPM β̂s.

Model Suppose excess returns on stock i obey the following factor structure

Ri,t+1 −Rf
t = ai,t + bi,tλt+1 + ui,t+1 (25)

where λt+1 = (zt+1 ft+1)
′
denotes “fundamental” and flow factors, and (b1it b

2
it) denotes the load-

ings on the factors where b2it is proportional to the benchmarking intensity of stock i. The co-

variance structure of the factors Σλ may contain positive off-diagonal elements, the covariance

structure of idiosyncratic shocks Σu does not.

An econometrician estimating the CAPM β of a stock as β̂ =
Covt(Ri,t+1,Rm,t+1)

V art(Rm,t+1)
whereRm,t+1 =∑

j wj,tRj,t+1 denotes the market-cap weighted average return on the universe of securities j.

Plugging (25) into the CAPM β formula, one finds that

β̂it =
Covt

(
bi,tλt+1 + ui,t+1,

∑
j wjt (bj,tλt+1 + uj,t+1)

)
V art

(∑
j wjt(b′j,tλt+1 + uj,t+1)

)
=

w′
tbtΣλb

′
tei + wi,tσ

2
u,i

w′
tbtΣλb′twt + w′

tΣuwt

(26)

where ei denotes the i-th unit vector.

To replicate Figure 1 in our simulation, we simulate Eq. (26) using the conditional means of

CAPM β̂s across market capitalization ranks rather than individual stocks β̂it. We model condi-

tional means of CAPM β̂ and BMI as flexible fifth-order polynomial functions of market capital-

ization ranks.
40

We then compare the simulated conditional means to the empirical conditional

40
Specifically, we the estimate conditional means each month as yi = γ0 +

∑5
j=1 γj(ME ranki)

j + ε.
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means of CAPM β̂s across market capitalization ranks. To evaluate model fit, we compute root

mean square error (RMSE) and Spearman rank correlations in each cross-section. Finally, we ex-

amine various model calibrations to assess how the flow factor and covariance structure between

factors affect the simulation outcomes.

Baseline Calibration In order to simulate Eq. (26) we need estimates of the factor loadings bt,

factor covariance matrix Σλ, idiosyncratic variances Σu, and weights wit.

We start by calibrating bt. We fix the fundamental factor exposures to b1it = CAPM β̂i1990m5 ∀ t.

This ensures that time-variation in our simulated CAPM β̂s is driven by exposure to the flow fac-

tor. We specify the flow factor loadings as proportional to the stock’s benchmarking intensity :

b2it ∝ BMIit. This reflects our hypothesis that stocks with higher benchmarking intensity experi-

ence greater exposure to benchmark-driven capital flows. The proportionality constant is difficult

to precisely determine empirically. However, Table B8 provides evidence that net flows into pas-

sive funds predict changes in CAPM β̂s. We therefore set the proportionality constant to 0.25,

matching the coefficient of the BMI-passive flow interaction term from Column 5 of Table B8.

We next calibrate the factor covariance matrix, Σλ. To do so, we first need to specify what

the fundamental factor and flow factor are. We proxy the fundamental factor using the first prin-

cipal component (PC) derived from various macro-financial variables: log changes in industrial

production (Cochrane, 1991), the 3-month Treasury bill rate (Bernanke and Kuttner, 2005), un-

employment rate (Kilic and Wachter, 2018), WTI oil price (Kilian and Park, 2009), the University

of Michigan consumer sentiment index (Baker and Wurgler, 2006), and the consumer price in-

dex (Campbell and Ammer, 1993). The first PC explains 39.2% of the variation in these variables

between 1990 and 2024. We scale the PC by 10−1
to align its scale to the β̂s from May 1990.

41

We specify the flow factor as net flows into passive mutual funds and ETFs, scaled by their

total net assets. We are motivated by our findings in Appendix B.1 which documents that net

flows into passive funds predict changes in CAPM β̂s. We compare the net flows into passive

funds with net flows into active funds to determine whether flows in general or passive flows in

particular drive changes in CAPM β̂s.

We estimate each component of the factor covariance matrix using 60-month rolling win-

dows,

Σ̂λ,t =

(
σ̂2
z,t ρ̂zf,tσ̂z,tσ̂f,t

ρ̂zf,tσ̂z,tσ̂f,t σ̂2
f,t

)
,

and set σu,it = 0.07 ∀ i, t.

41
Using changes in industrial production or the excess return on the market itself as the factor yields similar results.
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Table B9: Model Evaluation – RMSE and Rank Correlation

RMSE Rank Correlation Monthly

Model Calibration Passive Flows Active Flows Passive Flows Active Flows Obs.

Baseline 0.162 0.294 0.49 -0.02 249
Full Sample Σ̂λ 0.161 0.273 0.48 0.05 249

Fixed Weights (wit = wi1990m5 ∀i) 0.159 0.286 0.49 -0.02 249

Flow Factor Off (σf = 0) 0.531 0.531 -0.07 -0.07 249

Notes: This table reports the average root mean square error (RMSE) and Spearman rank correlation between simulated and

empirical CAPM β̂s from January 1998 to September 2018. Each month, we simulate conditional means of CAPM β̂ across market

capitalization ranks and compare them with empirical conditional means. Results are reported separately for calibrations using

active and passive net flows under different model configurations.

Results Our simulation yields three key insights: (i) Introducing a flow factor, whose loadings

are proportional to benchmarking intensity, effectively explains both the cross-sectional distri-

bution and the temporal evolution of CAPM β̂s from 1998 to 2018. (ii) Calibrating the flow factor

using passive net flows allows us to match the observed cross-section and time-series of CAPM

β̂s. (iii) In contrast, calibration using active fund flows fails to reproduce these observed condi-

tional moments. These findings support our hypothesis that passive flows are a key driver behind

the observed increases in CAPM β̂s.

Table B9 reports the average RMSE and Spearman rank correlations between simulated and

empirical CAPM β̂s for each month from January 1998 to September 2018. Comparisons across

model calibrations highlight that active fund flows yield RMSE nearly twice as large as those from

passive flows. The baseline calibration has an average RMSE of 0.16 (passive) versus 0.29 (active).

Additionally, simulated cross-sectional distributions of CAPM β̂s correlate strongly with actual

distributions when calibrated to passive flows (average correlation of 0.49), whereas correlations

using active flows are close to zero (-0.02). Comparing different model specifications, results

for passive flows remain robust. Eliminating the flow factor (σf = 0) substantially worsens

model performance, increasing RMSE dramatically and implies negative correlations between

simulated and observed β̂s. Figure B12 shows the time-series evolution of rank correlations and

RMSE between simulated and empirical CAPM β̂s from 1998 to 2018. The passive-flow calibration

consistently outperforms the active-flow calibration, particularly after 2007. This aligns with

Table B8, which indicates a stronger correlation between passive flows, benchmarking intensity,

and β̂s post-2010.

Figure B13 illustrates our two-factor model’s ability to replicate CAPM β̂ evolution across

market capitalization ranks from 2000 to 2018. The solid blue line represents simulated condi-

tional means, while the dashed red line shows empirical conditional means of CAPM β̂s. Despite

its simplicity, the model successfully captures key empirical patterns in the data. It is able to repli-
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Figure B12: Time Series of Correlation and RMSE Between Simulated and Empirical CAPM β̂s

Notes: This figure plots Spearman rank correlation and root mean square error between the empirical and simulated

conditional means of CAPM β̂s from 2000 to 2018. Solid blue lines are report results from a calibration using net

flows into passive mutual funds and ETFs. Dashed red lines are report results from a calibration using net flows into

active mutual funds.

cate the cross-sectional distribution well. Moreover, the model is able to replicate the time-series

increase in CAPM β̂s across market capitalization ranks from 2000 to 2018.
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Figure B13: Simulated and Empirical CAPM β̂s Across Market Capitalization Ranks

Notes: This figure plots the empirical and simulated conditional means of CAPM β̂s from 2000 to 2018. The flow

factor is calibrated to the net flows into passive mutual funds and ETFs. Dashed red line is the conditional mean of

the empirical distribution across market capitalization ranks. Solid blue line is the conditional mean of the simulated

distribution across market capitalization ranks.
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C Other Measures of Perceived Cost of Equity Capital

This section provides details on alternative measures of the perceived cost of equity capital. We

use these alternative measures to validate our main results that the perceived cost of capital

increases due to the CAPM β̂ distortions caused by benchmarking. Specifically, we show that

benchmarking-induced changes of a stock’s CAPM β̂ cause changes in the perceived cost of eq-

uity of stock analyst and regulators of public utilities and railroads.

C.1 Stock Analysts’ Perceived Cost of Equity Capital

Wecollect stock analysts’ perceived cost of equity capital from three independent research providers:

I/B/E/S, Morningstar, and Value Line. These firm sell their reports and advice to investors, cre-

ating an incentive to assign cost of equity that match investors’ perceptions of a stock’s risk.

However, the providers use different methodologies to estimate the cost of equity which pro-

vides us with independent variation which we exploit to corroborate our main finding.

Morningstar analysts’ cost of equity We obtainMorningstar analysts’ cost of equity directly

from Morningstar Direct for the period from 2001 to 2018 for stocks in Morningstar’s coverage

universe which are listed on the NYSE, NASDAQ, and Amex. Morningstar’s cost of equity con-

sists of a common risk-free rate and a stock-specific risk premium, which reflects the stock’s

systematic risk as qualitatively assessed by an analyst. This approach means that cross-sectional

variation in the cost of equity depends solely on Morningstar’s perception of systematic risk.

While Morningstar draws inspiration from the CAPM, it differs by using a qualitative, forward-

looking assessment rather than simply applying the CAPM directly (for details see Morningstar,

2022, page 4f)).

Value Line safety rank Wehand-collect and digitize Value Line Investment Survey reports for

Small & Mid-Cap stocks from 1998 to 2006 to obtain Value Line’s safety rank measure, using the

last available rank in each calendar year. The safety rank, ranging from 1 (safest) to 5 (riskiest),

reflects Value Line analysts’ subjective assessment of a stock’s price stability and the financial

strength of the underlying firm. Jensen (2024) shows that the CAPM best describes the subjective

risk assessment of Value Line (see also Brav, Lehavy, and Michaely, 2005).

In the main text, we use the safety rank as a proxy for the perceived cost of equity capital

and follow Eskildsen et al. (2024) in converting the ordinal rank to a required return on equity by

multiplying it by 1.5 percentage points. We show below that instead working directly with the

original ordinal rank yields qualitatively similar results.
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Table C10: Change in Probability of Each Value Line Safety Rank in Response to∆ BMI = 10 p.p.

Safe Average Risky

Value Line Safety Rank 1 2 3 4 5

∆ BMI = 10 p.p. -1.52
∗∗∗

-4.00
∗∗∗

-8.48
∗∗∗

11.77
∗∗∗

2.23
∗∗∗

(0.35) (1.10) (1.71) (2.37) (0.68)

Baseline Probability 2.7% 8.0% 48.3% 37.0% 4.0%

Observations 2,524

Brant-Test p-value 0.61

Notes: This table reports marginal effects of an ordered logit regression of Value Line

safety rank on changes in benchmarking intensity due to Russell index reconstitu-

tion. We restrict the sample to stocks within 400 ranks around the Russell index

cutoffs. Standard errors in parentheses are clustered by year. * p<0.10, ** p<0.05, ***

p<0.01.

Table C10 reports the marginal effects from an ordered logit regression of the Value Line

safety rank on exogenous changes in benchmarking intensity due to Russell index reconstitu-

tion. We restrict the sample to stocks within 400 ranks around the Russell index cutoffs. The

coefficients indicate the change in the probability of each outcome category due to a 10 p.p. in-

crease in BMI (from May to June) caused by the Russell index reconstitution. The results show

that an exogenous increase in BMI causes a significant increase in the Value Line safety rank. The

probability that a stock’s riskiness is classified as above average increases by more than 11 p.p.

at index inclusion. This suggests that Value Line’s stock analysts perceive an increase in the

required rate of return on equity when benchmarking intensity increases.

I/B/E/S stock analysts’ subjective expected returns I/B/E/S does not directly provide cost

of equity estimates. However, we can infer stock analysts’ perceived cost of equity capital from

their subjective expected returns. To do this we obtain data on the consensus forecasts of stock

analysts from I/B/E/S for the period from 2002 to 2018. We construct stock analysts’ subjective

expected returns from I/B/E/S as

E⋆
t [Ri,t+1] =

E⋆
t [pi,t+1]− E⋆

t [di,t+1]

pi,t
− 1 (27)

in which E⋆
t [pi,t+1] and E⋆

t [di,t+1] are the median consensus one-year price target and dividend

forecast over the next fiscal year, respectively, and pi,t is the stock’s price at the day of the fore-

cast from CRSP. The subjective expected returns constructed in Eq. (27) are based on analysts’

forecasts of future stock prices and thus incorporate both perceived discount rates and perceived
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Figure C14: Security Market Line using I/B/E/S Analysts’ Subjective Expected Exc. Returns
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Notes: This figure shows monthly binned scatter plots of stock analysts’ subjective expected excess returns versus

CAPM β̂. The conditional means of each bin are identified using only cross-sectional variation by absorbing year-

month fixed effects. α is the average of the year-month fixed effects. The slope of the security market line is given

by λ. CAPM β̂ from Welch (2022b). N = 261,795 observations.

mispricing, that is, whether analysts think the stock is over- or undervalued (see Jensen, 2024).

Figure C14 plots the CAPM security market line using stock analysts’ subjective expected

returns using the CAPM β̂s. The adj. R2
is 0.22 and the slope implies a 6.3% annual equity risk

premium. We find an annual α of 2.6%. The α likely reflects the unconditional upward bias in

analysts’ target prices documented by Brav and Lehavy (2003).

C.2 Cost of Equity Capital of Public Utilities

We study utility rate cases from 1998 to 2018, covering all major investor-owned electricity and

natural gas utilities in the U.S., which collectively serve over three-quarters of U.S. consumers.

We collect data on requested and authorized costs of capital from Regulatory Research Associates.

Background Electricity and natural gas utilities operate as regulated monopolies, granted ge-

ographic exclusivity in exchange for rate oversight by government utility commissions. Because

these utilities do not face market-based pricing, regulators use a cost-of-service approach: they

evaluate the utility’s costs and investments, assess their prudence, and apply a risk-adjusted re-

turn to determine the revenue requirement that sets customer rates.

A central regulatory challenge is setting a fair return on equity (RoE). The federal government

(FERC Opinion No. 569, 2019) and most state public utility commissions—including those in
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Table C11: Effect of Benchmarking on Utilities Requested Return on Debt

(1) (2) (3) (4) (5) (6)

Requested Authorized

Return on Debt — R
f

Return on Debt — R
f

Benchmarking Intensity (in %) 0.016 0.008 0.009 -0.002 -0.013 -0.020

(0.012) (0.011) (0.011) (0.014) (0.013) (0.015)

BBB Option-Adjusted spread 0.264
∗∗∗

0.259
∗∗∗

0.310
∗∗∗

0.296
∗∗∗

(0.048) (0.049) (0.053) (0.057)

Requested E/(D+E) 0.075
∗∗∗

0.071
∗∗∗

(0.016) (0.018)

Authorized E/(D+E) 0.072
∗∗∗

0.066
∗∗∗

(0.018) (0.016)

Constant 2.218
∗∗∗

-1.979
∗

3.502
∗∗∗

-0.487

(0.267) (0.753) (0.295) (0.878)

Utility-by-State Fixed Effect ✓ ✓
Adj. R

2
0.00 0.14 0.38 0.00 0.13 0.39

Observations 1,381 1,381 1,347 1,022 1,022 987

Notes: This table shows coefficient estimates for Return on Debti,t = αi + BMIi,t + ξX ′
i,t + νi,t Risk-free

rate (R
f
t ) is the nominal yield on 10-year Treasurys. Standard errors clustered at utility and year-quarter in

parenthesis. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

California, Texas, Florida, New York, and Pennsylvania—endorse the CAPM for this purpose.

The utility’s capital stock, or rate base, consists of the assets on which rates are calculated.

Its opportunity cost is the return it could earn in competitive markets. Utilities typically finance

operations with roughly equal parts debt and equity, and regulators use the weighted average

cost of capital (WACC) to set the allowed return. The authorized return is almost always set

as a percentage of the rate base. For example, with a $10 billion rate base and an 10% allowed

return, the utility may recover $1 billion annually to cover debt costs and provide a return to

shareholders.
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D Additional Tests and Instrument Validity

D.1 Changes in BMI and Measures of Risk Exposure

Changes in BMI that correlate with changes in exposure to aggregate or idiosyncratic risk pose

a threat to our identification strategy. Industry’s exposure to aggregate risk (Karolyi, 1992) and

firm fundamentals (Gomes, Kogan, and Zhang, 2003) determine firm-level exposure to aggre-

gate risk. We test whether the aggregate risk exposure of treated firms changes by estimating

whether the CAPM β̂ of comparable peer firms changes when a firm’s BMI changes. We also test

whether measures of idiosyncratic firm-level risk exposure change with BMI. However, we find

no evidence that changes in BMI correlate with changes in risk exposure.

Table D12: Placebo test using the CAPM β̂ of peer firms

(1) (2) (3) (4) (5) (6)

Firm’s Firm’s All Peers’ Peer n=1’s Peer n=2 Peer n=3’s

∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE ∆ CAPM βE

∆ CAPM βPeer
0.232

∗∗∗

(0.010)

∆ BMI 0.814
∗∗∗

0.037 0.075 -0.009 0.043

(0.054) (0.029) (0.046) (0.043) (0.045)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Peer FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.421 0.249 0.472 0.466 0.471 0.479

Observations 46,689 16,995 47,749 16,470 16,022 15,257

Notes: This table reports coefficient estimates for a placebo test using N=3 firm peers’ change in CAPM β̂ and assigns them

the ∆ BMI of the firm: ∆CAPM βPeer

j,t = αi + αj + αt + ∆BMI
Firm

i,t + εj,i,t for firm i and peer j in year t. Standard errors in

parentheses are clustered at the firm-level in column (2) and double-clustered at firm and peer level in other columns. + p<0.10,

* p<0.05, ** p<0.01, *** p<0.001.

Changes in CAPM β̂s of peer firms We collect information about a firm’s peer group from

ISS. For each firm, we randomly select three peer firms and test whether the firm’s change in

BMI correlates with changes in the CAPM β̂ of peers. To avoid confounding our estimates, we

exclude peers that also experience a change in BMI. Appendix Table D12 shows the results of

this test using a firm’s peers. The regression of changes in a firm’s CAPM β̂ on changes in its

peers’ CAPM β̂ shows a significant positive coefficient, indicating common exposure to aggregate

risk.
42
However, changes in a firm’s BMI do not correlate with changes in peers’ CAPM β̂s, with

42
Levi and Welch (2017) similarly show that the CAPM β̂s of peer firms predict own firms’ β̂ well.
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insignificant coefficients close to zero. This suggests that benchmarking distortions cause the

significant changes in a firm’s CAPM β̂ rather than changes in aggregate risk exposure.

Table D13: Changes in CAPM β̂ and firm-level risk measures of Hassan et al. (2019)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(in σ units) ∆ Risk ∆ Pol. Risk ∆ Pol. Risk - Econ. ∆ Pol. Risk - Secu. ∆ Pol. Risk - Tech. ∆ Pol. Risk - Trade

∆ CAPM βE
0.0192

∗∗
0.0170

∗
0.0163

∗
0.0149

∗
0.0087 -0.0002

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

∆ BMI -0.0086 0.0080 -0.0011 0.0097 0.0115 -0.0088

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13

Observations 29,970 29,970 29,985 29,985 29,963 29,963 29,978 29,978 29,982 29,982 29,976 29,976

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Firm-level Riski,t = αi+αt+γ ∆BMIi,t+ νi,t. Changes in firm-level risk

(Hassan et al., 2019) calculated between 1st and 4th quarter of the year. Coefficients are standardized to unit variances. Changes in firm-level risk measures, CAPM

β̂s, and BMI are trimmed at the 1% and 99% level. Standard error in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

Firm-level riskmeasures We analyze six firm-level risk measures derived from earnings calls

by Hassan et al. (2019): the overall risk exposure of firms, exposure to overall political risk, and

exposure to political risk stemming from economic policy, security policy, technological policy,

and trade policy. Appendix Table D13 reports estimates of OLS regressions of changes in firm-

level risk measures on changes in CAPM β̂ and changes in BMI. Two things are worth noting.

First, changes in the CAPM β̂ correlate with changes in the firm-level risk measures. Four of

six firm-level risk-measure show a statistically significant positive relationship with changes in

the CAPM β̂ of firms. Second, changes in BMI do not correlate with changes in firm-level risk

measures. The estimated coefficients across all risk measures are close to zero and not statistically

significant.

D.2 Changes in BMI and Measures of Financial Constraints

Changes in BMI could correlate with changes in financial constraints, potentially violating the ex-

clusion restriction of our IV strategy. We test this by examining the correlation between changes

in a firm’s BMI and measures of financial constraints and CDS spreads. If changes in BMI corre-

lated with changes in financing costs due to factors other than CAPM β̂, the exclusion restriction

would be violated. However, we find no evidence of such correlations.

Text-based measures of financial constraints We collect text-based measures of financial

constraints from Hoberg and Maksimovic (2015) and Linn and Weagley (2021). These measures
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Table D14: Changes in measures of text-based financial frictions (Hoberg andMaksimovic, 2015)

(1) (2) (3) (4) (5) (6)

(in σ units) ∆ Inv. Delay ∆ Inv. Delay &

Equity Issue

∆ Inv. Delay &

Debt Issue

∆ Inv. Delay &

Private Issue

∆ Inv. Delay &

Equity (LW, ’23)

∆ Inv. Delay &

Debt (LW, ’23)

∆ BMI -0.0008 -0.007 -0.0004 -0.005 -0.010 0.004

(0.009) (0.009) (0.009) (0.009) (0.008) (0.007)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.08 0.07 0.06 0.07 0.07 0.04

Observations 23,463 23,463 23,463 23,463 32,275 32,275

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Measure of Financial Constrainti,t = αi+αt+γ∆BMIi,t+
νi,t. Changes in text-based financial constraint measures from Hoberg and Maksimovic (2015) and Linn and Weagley (2021). Coefficients are

standardized to unit variances. Changes in financial constraints measures, CAPM β̂s, and BMI are trimmed at the 1% and 99% level. Standard error

in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

capture the extent to which firms face financial constraints and are likely to constrain invest-

ment based on the text of their annual reports. Appendix Table D14 reports estimates of OLS

regressions of changes in the firm’s financial constraints on changes in the BMI of a firm. The

estimated coefficients of BMI are close to zero and not statistically significant across all measures.

Importantly, Column (1) of Appendix Table D14 shows that changes in BMI do not correlate with

firm statements about plans to delay investments.

Table D15: Changes in CDS Spreads and CAPM β̂s of CDS Spreads

Dependent variable: ∆ CDS Spread (in σ units) ∆ CDS CAPM β (in σ units)

(1) (2) (3) (4) (5) (6) (7) (8)

∆ BMI (in σ units) -0.0221 -0.0244 -0.0189 -0.0283 0.0280 0.0189 0.0014 0.0305

(0.0212) (0.0209) (0.0207) (0.0210) (0.0240) (0.0242) (0.0253) (0.0260)

Momentum (Cum. Ret.) -0.120
∗∗∗

-0.140
∗∗∗

-0.0618
∗∗

-0.0366

(in σ units) (0.0315) (0.0332) (0.0238) (0.0259)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Year × Size Decile ✓ ✓
Year × Momentum Decile ✓ ✓

Adj. R
2

0.260 0.269 0.303 0.315 0.103 0.106 0.179 0.155

Observations 2,798 2,798 2,798 2,798 2,299 2,299 2,299 2,299

Notes: This table reports coefficients estimates for regression specifications of the form: ∆CDS Spreadsi,t = αi+αt+γ ∆BMIi,t+ νi,t.
Coefficients are standardized to unit variances. CDS spreads for senior unsecured debt with tenor of 5 year and doc clause XR14 (no

restructuring). CDS CAPM β̂s are calculated on daily data from 2010 to 2019 using the weighted least squares estimator of Welch (2022b)

with exponentially decay of 3 months half life. Changes in CDS spreads and CDS CAPM β̂s are trimmed at the 2% and 98% level. Standard

error in parentheses are clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Changes in CDS spreads and CDS CAPM β̂ We collect CDS spreads for senior unsecured

debt with tenor of 5 year from 2010
43
to 2019. We calculate CDS CAPM β̂s on daily data using

the estimator of Welch (2022b). We calculate changes in a firm’s CDS spreads and firm’s CAPM

β̂ of CDS spreads as the difference between the average of daily observations in the first and last

quarter of a year. Appendix Table D15 reports estimates of OLS regressions of changes in CDS

spreads and changes in the CDS CAPM β̂ on changes in the BMI of a firm. We find no evidence

that changes in the BMI predict changes in firm CDS spreads or CDS CAPM β̂s. The estimated

coefficients on BMI are insignificant and close to zero.

Table D16: Changes in measures of corporate governance

(1) (2) (3) (4) (5) (6)

(in σ units) ∆ S&P G-Score ∆ Sus. G-Score ∆ Ref. G-Score ∆ Sus. ESG ∆ S&P ESG ∆ Ref. ESG

∆ BMI -0.024 -0.020 0.008 -0.009 0.031 -0.003

(0.057) (0.024) (0.017) (0.026) (0.057) (0.017)

Fixed Effects
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓

Adj. R
2

0.31 0.20 0.07 0.23 0.34 0.10

Observations 2,003 7,168 13,925 7,326 2,003 13,925

Notes: This table reports coefficients estimates for regression specifications of the form: ∆Governance Scorei,t = αi + αt +
γ ∆BMIi,t + νi,t. Governance and ESG scores of Standard & Poor, Sustainalytics, and Refinitiv. Coefficients are standardized to

unit variances. Changes in G-Scores, ESG Scores, and BMI are trimmed at the 1% and 99% level. Standard error in parentheses are

clustered at the firm-level. + p<0.10, * p<0.05, ** p<0.01, *** p<0.001.

D.3 Changes in BMI and Measures of Corporate Governance

An increase in BMI and associated institutional ownership could impact investment through im-

proved corporate governance (Appel et al., 2016, Aghion, Van Reenen, and Zingales, 2013). How-

ever, increased passive ownership may also decrease monitoring incentives, as in the model of

Bebchuk and Hirst (2019). We test whether measures of governance change with changes in BMI

but find no evidence of such an effect.

We obtain governance and ESG scores from S&P, Sustainalytics, and Refinitiv and test whether

changes in BMI correlate with changes in those scores. Appendix Table D16 reports estimates

of OLS regressions of changes in governance and ESG scores on changes in the BMI of a firm.

The estimated coefficients are close to zero and are not statistically significant. Our findings are

consistent with Kacperczyk et al. (2021), who also find no evidence of changes in governance at

benchmark inclusion.

43
We focus on the period after ISDA’s “Big Bang" reforms of April 2009 to maintain a consistent sample.
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